
Page 1 of 61 

 

 Chap 2 (7)  

CHAPTER TWO ELECTRICAL RELAXATION 1 

[NO FIGURE VERSION] 2 

 3 

3/4/2017 4:09 AM 4 

Contents 5 

PRELIMINARIES ......................................................................................................................3 6 

2.1 NOMENCLATURE ........................................................................................................3 7 

2.2 ELECTROMAGNETISM ...............................................................................................3 8 

2.2.1 UNITS .................................................................................................................................................... 3 9 
2.2.2 ELECTROMAGNETIC QUANTITIES ................................................................................................................... 5 10 
2.2.3 ELECTROSTATICS ....................................................................................................................................... 7 11 

2.2.3.1 Point Charge (Coulomb’s Law) .............................................................................................................. 7 12 

2.2.3.2 Long Thin Rod with Uniform Linear Charge Density  ........................................................................... 7 13 
2.2.3.3 Large Flat Insulating Plate .................................................................................................................... 8 14 
2.2.3.4 Large Flat Conducting Plate .................................................................................................................. 8 15 
2.2.3.5 Two Large Parallel Insulating Flat Plates ............................................................................................... 8 16 
2.2.3.6 Two Large Parallel Conducting Flat Plates ............................................................................................. 8 17 
2.2.3.7 Concentric Conducting Cylinders ........................................................................................................... 9 18 
2.2.3.8 Concentric Conducting Spheres ............................................................................................................. 9 19 
2.2.3.9 Isolated Sphere .................................................................................................................................. 10 20 

2.2.4 ELECTRODYNAMICS ................................................................................................................................. 10 21 
2.2.5 MAXWELL’S EQUATIONS ........................................................................................................................... 11 22 
2.2.6 ELECTROMAGNETIC WAVES ....................................................................................................................... 13 23 
2.2.7 LOCAL ELECTRIC FIELDS ............................................................................................................................ 16 24 
2.2.8 CIRCUITS .............................................................................................................................................. 17 25 

2.2.8.1 Simple Circuits .................................................................................................................................... 17 26 
2.2.8.2 AC Circuits .......................................................................................................................................... 19 27 
2.2.8.3 Experimental Factors .......................................................................................................................... 23 28 

2.3 DIELECTRIC RELAXATION ...................................................................................... 25 29 

2.3.1 FREQUENCY DOMAIN ............................................................................................................................... 25 30 
2.3.1.1 Dipole Rotation .................................................................................................................................. 25 31 
2.3.1.2 Ionic Hopping ..................................................................................................................................... 30 32 

2.3.2 TIME DOMAIN ....................................................................................................................................... 30 33 
2.3.3 TEMPERATURE DOMAIN ........................................................................................................................... 31 34 
2.3.4 EQUIVALENT CIRCUITS.............................................................................................................................. 33 35 
2.3.5 INTERFACIAL POLARIZATION....................................................................................................................... 34 36 
2.3.6 MAXWELL-WAGNER POLARIZATION ............................................................................................................ 35 37 
2.3.7 EXAMPLES ............................................................................................................................................. 37 38 

2.3.7.1 Liquid Water ...................................................................................................................................... 37 39 
2.3.7.2 Supercooled Water ............................................................................................................................. 38 40 
2.3.7.3 Hydration Water ................................................................................................................................ 41 41 

2.4 CONDUCTIVITY RELAXATION ............................................................................... 43 42 

2.4.1 GENERAL ASPECTS .................................................................................................................................. 43 43 





Page 2 of 61 

 

 Chap 2 (13)  

2.4.2 DISTRIBUTION OF CONDUCTIVITY RELAXATION TIMES....................................................................................... 45 44 
2.4.3 CONSTANT PHASE ELEMENT ANALYSIS ......................................................................................................... 46 45 

2.4.4 DETERMINATION OF  .......................................................................................................................... 48 46 

2.4.4.1 Analyses in the Complex Resistivity Plane............................................................................................ 48 47 
2.4.4.2 Modulus and Resistivity Spectra ......................................................................................................... 48 48 
2.4.4.3 Complex Admittance Plane ................................................................................................................. 49 49 

2.4.5 COMBINED CONDUCTIVITY AND DIELECTRIC RELAXATION .................................................................................. 49 50 
2.4.6 EXAMPLES ............................................................................................................................................. 50 51 

2.4.6.1 Electrode Polarization and Bulk Relaxation in the Frequency Domain .................................................. 50 52 

2.4.6.2 Conductivity Relaxation in Sodium   Alumina ................................................................................ 51 53 

2.4.6.3 Complex Impedance Plane Analysis of Electrode Polarization in Sintered  Alumina. ..................... 52 54 

2.4.6.5 Intergranular Effects in Polycrystalline Electrolytes ............................................................................. 53 55 
2.4.6.6 Intergranular Cracking ....................................................................................................................... 53 56 
2.4.6.7 Intergranular Gas Adsorption ............................................................................................................. 54 57 

APPENDIX 2.1 – DERIVATION OF M* FOR A DEBYE RELAXATION WITH NO 58 

ADDITIONAL SEPARATE CONDUCTIVITY ....................................................................... 56 59 

COMPUTATION CODE FOR A DEBYE RELAXATION WITH ADDITIONAL SEPARATE 60 

CONDUCTIVITY 0 . .............................................................................................................. 58 61 

APPENDIX 2.3 DERIVATION OF DEBYE DIELECTRIC EXPRESSION FROM 62 

EQUIVALENT CIRCUIT......................................................................................................... 59 63 

 64 

  65 

0

 



Page 3 of 61 
 

 Chap2 (13)  

Preliminaries (include in Book Prologue) 66 

 The examples used to illustrate different applications are not central to the purpose of this 67 

book and are not recent. Some of the applications have been discussed in an unpublished but 68 

widely circulated paper by the present author that is available at 69 

http://imhodge.startlogic.com/pdfs/ac%20data%20analysis(final).pdf.  70 

 71 

2.1 Nomenclature 72 

Italicized lower case letters are used for physical variables, e.g. {x, y, z, r} for distances, t 73 

for time, and q for charge; italicized upper case letters are used for specific values of variables 74 

and field magnitudes, e.g. {X, Y, Z, R}, T, Q. Vectors are denoted by bold face upper case letters 75 

with an arrow V  and tensors are denoted by bold face upper case T . 76 

There are two time constants for relaxation of polarization, one for relaxation at constant 77 

electric field (i.e. dielectric relaxation of the displacement D ) denoted by E  and one for 78 

relaxation at constant displacement (i.e. conductivity relaxation of the electric field E ) denoted 79 

by D . Amongst other things these two distinct time constants correspond to two microscopic 80 

time constants for a single macroscopic dielectric time constant, as has been briefly discussed in 81 

ref. [1]. 82 

Dielectric and conductivity relaxations can both occur in the same material over two 83 

resolvable frequency ranges and the usual nomenclature for the low and high frequency limits of 84 

a single relaxation process (e.g. 0  and   for the relative permittivity) is ambiguous and has 85 

caused confusion in a long-standing debate about the legitimacy of the electric modulus 86 

formalism. We introduce a new nomenclature here to distinguish the low and high frequency 87 

limits for the two possible relaxations that, although somewhat clumsy, eliminates this 88 

confusion. The two limits for a dielectric relaxation at constant E  are denoted by 0

E  and E  and 89 

the two limits for a conductivity relaxation at constant D  are denoted by 0

D  and D . Since a 90 

conductivity relaxation must occur at lower frequencies than a dielectric relaxation for the latter 91 

to be readily observed (with some exceptions depending on instrumental sensitivity) then 92 

0

D E   . 93 

Electric charge is denoted by q (Coulomb C), volume charge density by    3Cm , 94 

surface charge density by   
2

C m


, linear charge density by   
-1Cm , current by I (Ampere = A = 95 

C s-1), current density by J  2A m , electric potential by E   1V=J C , electric field by E 96 

 1 1NC Vm  , electric dipole moment by E  (C.m), resistance by R (Ohm = 
1

V A


  ), and 97 

capacitance by C (Farad F = 
1

C V


). The SI unit for conductance (=1/resistance) is the Siemen S 98 

(equal to 1 ). 99 

 100 

2.2 Electromagnetism 101 

2.2.1 Units 102 

Two systems of electromagnetic units are in use, the cgs (centimeter-gram-second) and 103 

the MKS (meter-kilogram-second) or SI (Systeme Internationale). The SI system is the official 104 

http://imhodge.startlogic.com/pdfs/ac%20data%20analysis(final).pdf.
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scientific system but the cgs system appears in older publications and since it is still used by 105 

chemists and materials scientists its relationship to the SI system is delineated here. For 106 

mechanics only the numerical value of physical quantities changes with the system of units, but 107 

in electromagnetism there is an additional difference of approach: electric charge in the cgs 108 

system is defined in units of mass-length-time whereas in the SI it is defined to be just as 109 

fundamental as mass, length and time: this SI unit of charge is the Coulomb. Other similar 110 

non-electromagnetic differences occur: for example the SI temperature unit K (Kelvin) is also 111 

considered to be a fundamental unit.  112 

The cgs form of Coulomb’s law for the force F between two point charges 1q  and 2q  113 

separated by a distance r and immersed in a medium of permittivity   is 114 

 115 

1 2

2

q q
F

r
 ,           (2.1) 116 

 117 

that gives dimensions of 1/2 3/2 1M L T   for the electrostatic unit (esu) of charge. The cgs equation 118 

for the magnetic force between two straight parallel conductors of length L carrying currents 1I  119 

and 2I  and separated by a distance r in a material of magnetic permeability   is 120 

 121 

1 22 LI I
F

r


 ,           (2.2) 122 

 123 

that gives dimensions of 1/2 1/2M L  for the electromagnetic unit (emu) of charge. The esu and emu 124 

units differ by a factor 1LT   that has the dimensions of speed and the value of the speed of light, 125 

c. This is the reason that c enters into many cgs formulae. Numerically, emu esuc  (c in cgs 126 

units = 102.9979 10  cm/s). 127 

 The Coulomb C is defined experimentally by its time derivative, the current in amperes 128 

A, that in turn is determined using eq. (2.2). A constant 0  is inserted into the SI form for this 129 

magnetic force to ensure that the same force is produced by the same currents separated by the 130 

same distance: 131 

 132 

0 1 2

4

LI I
F

r




 .          (2.3) 133 

 134 

Equations (2.2) and (2.3) reveal that 7 2

0 4 10 N.A     . The factor 4  arises from Gauss’s 135 

Law (eq. (1.150) and eq. (2.18) below). The SI form of Coulomb’s law is 136 

 137 

1 2

2

04 e

q q
F

r 
 ,          (2.4) 138 

 139 

where 0e  is a constant (the permittivity of free space) with dimensions 
2 1 3 2Q M L T 

 that 140 

correspond to the units of capacitance per unit length (Farads meter 1 ). Its numerical value is 141 
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128.854187818 ×10  Farad 1m . The numerical relations between C, esu and emu are 142 
9 1C 3 10 esu 10 emu   , where the approximate equality arises from placing the speed of 143 

light at 83 10  m/s rather than 82.9979... 10  m/s. The dimensionless fine structure constant   144 

in cgs units is 2 2/ 2 /e c e hc    and in SI units is 2 2

0 02 / 4 e / 2ee hc e hc    . It is 145 

readily confirmed that this SI value of   is dimensionless and has the same numerical value as 146 

the cgs value. The quantity  
1/2

0 0e 


 equals the speed of light so that 0e  is 147 

   
2

2 8 7

0 0e 1/ 1 2.9979... 10 4 10c       . 148 

 The cgs system having been illustrated to this point is now dispensed with and only the SI 149 

system is used from here on apart from some tabulated expressions and one occasional exception 150 

- the unit for the molecular dipole moment. In the SI system this is the coulomb-meter but this 151 

unit is inconveniently large and is rarely used. The more common unit is the Debye, defined as 152 

the dipole moment created by two opposite charges of 1010  esu  203.3 10 C  separated by 1.0 153 

Angstrom  1010 m . The persistence of this unit probably originates in the facts that (a) 154 

molecular dipole moments are of order unity when expressed in Debyes but of order 3010  in 155 

coulomb-meters; (b) chemists and materials scientists still insist on using the Debye. It is not 156 

clear to this author why a convenient SI unit such as 3110  C.m 0.33  Debye or 3010  C.m 157 

3.3  Debye has not been introduced, especially since the SI unit nm has rapidly replaced the 158 

Angstrom in optical spectroscopy. 159 

 160 

2.2.2 Electromagnetic Quantities 161 

 Many of these are conveniently defined using a parallel plate capacitor comprising two 162 

conducting flat plates, each of area A and separated by a distance d. The geometric "cell 163 

constant" k  is 164 

/k d A .           (2.5) 165 

Each plate has a charge of magnitude 0q  but of opposite sign (uniformly distributed since the 166 

plates are conducting) that produces a potential difference V  between the plates. The 167 

capacitance is 0 /C q V  with unit Farad = C V-1. The surface charge density 0 0 /q A    on 168 

the plates induces an interfacial charge density i  on each surface of any dielectric material 169 

between the plates. The electric field E , polarization P  and displacement vector D  are 170 

orthogonal to the plates with magnitudes defined by the following table: 171 

 172 

  SI    cgs    173 

        0D             04D         (2.6) 174 

         iP             iP         (2.7) 175 

      0 0e iE D P         04 4iE D P            (2.8) 176 

 177 

The charge densities 0  and i  generate an electrostatic potential E  (in volts) and net volume 178 

charge density   for which 179 

 180 
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 D             (2.9) 181 

and 182 

EE .            (2.10) 183 

 184 

The inverse of eq. (2.10) is 185 

 186 
2

1

1,2

s

s

d  E s             (2.11) 187 

 188 

where s  is the displacement vector in the direction of E  and 1,2  is the potential difference 189 

between the points 1s  and 2s . The relative permittivity   and dielectric susceptibility d  are 190 

defined in the following table: 191 

 192 

       SI         cgs     193 

0e

D

E
      

D

E
         (2.12) 194 

0

0 0

e
1

e e
d

D EP

E E
 


       

1
1

4 4
d

P D E

E E
 

 


       (2.13) 195 

A dielectric material between the plates decreases the electric field between the plates 196 

because the induced polarization charge density i  on the surface of the material partly cancels 197 

the unchanged charge density on the plates [eq. (2.8)]. The units of D and P (charge area 1 ) 198 

correspond to dipole moment (charge-distance) per unit volume. In view of D , E  and P  being 199 

vectors the relative permittivity and dielectric susceptibility are in general tensors but for 200 

isotropic media (liquids, glasses, and isotropic crystals) D, E, P and   are all scalars. We mostly 201 

treat them as scalars in this book. 202 

 The magnetic analogs of D, E, P, 0e ,    and d  are, respectively, the magnetic induction 203 

B, the magnetic field H, the magnetization M, the permeability of free space, 0 , the relative 204 

permeability  , and the magnetic susceptibility m . The SI and cgs definitions are 205 

 206 

      SI       cgs   207 

0B H    B H         (2.14) 208 

0

B
M H


     

4

B H
M




        (2.15) 209 

B

H
     

B

H
         (2.16) 210 

0

= 1M

M B

H H



    = = 1

4
M

M B

H H



       (2.17) 211 
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 212 

2.2.3 Electrostatics 213 

 Gauss’s Law is 214 

 215 

0e • •enclosed free

S S

d q d q
 
 
 
 

  E A D A        (2.18) 216 

 217 

where enclosedq  is the total net charge within a closed surface of magnitude A,   is the relative 218 

permittivity1 of the material enclosed by the surface, and the surface integral is the flux of the 219 

electric field through the surface. For the definition in terms of D  the quantity free
q  does not 220 

include the induced polarization charges because these are subsumed into the permittivity 0e  . 221 

Equation (2.18) is the electrical version of the mathematical Gauss's Theorem in Chapter One 222 

[eq. 1.146)]. As noted in Chapter One the differential area vector d A  of a surface is defined as 223 

having a direction perpendicular to the plane of the surface, and for closed surfaces such as occur 224 

in Gauss’s Law the outward pointing direction is defined to be positive. The Gaussian surface is 225 

a purely mathematical object that can be placed anywhere although it must have the same 226 

symmetry as the system under study to be helpful. Thus information about charge distribution 227 

can be inferred even though E is determined by the total enclosed charge. 228 

 We now apply Gauss's Law to calculate E  and the capacitance C for several electrical 229 

geometries and charge distributions. The geometrical objects and charges are taken to be 230 

immersed in a medium of relative permittivity  . 231 

 232 

2.2.3.1 Point Charge (Coulomb’s Law) 233 

Define the Gaussian surface S as a sphere of radius r with a point charge q at its center. 234 

By symmetry E  is everywhere parallel to da  and has a constant magnitude E obtained from 235 
2

0 0e 4 ed r E    E A  so that 236 

 237 

2

04 e

q
E

r
 .           (2.19) 238 

 239 

2.2.3.2 Long Thin Rod with Uniform Linear Charge Density  240 

 Let the Gaussian surface be a cylinder of radius r  and length L, with the rod as its 241 

coaxial central axis. Then  0 0e e 2
S

E rL q L      E•dA  so that at a distance r from the 242 

axis  243 

 244 

                                                
1 Too often called the "dielectric constant" which is misleading because it is not constant (it 

varies with temperature and frequency for example). 
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02 e
E

r




 .           (2.20) 245 

 246 

2.2.3.3 Large Flat Insulating Plate 247 

Let a charge q be uniformly distributed over the two sides of an infinite2, flat insulating 248 

plate of area A so that the charge on each surface is q/2. Define   as the charge per unit area so 249 

that the charge density on each surface is / 2 . Define the Gaussian surface as a cylinder whose 250 

axis is parallel with the area vector of one plate and has one end inside the plate and the other 251 

end in a medium of relative permittivity  . Then the electric field points away from each surface 252 

of the plate (since q is positive) and  0 0e e / 2 / 2
S

E A q A     E•dA  so that 253 

 254 

02e
E




 .           (2.21) 255 

 256 

The electric field is therefore independent of distance from the plate. 257 

 258 

2.2.3.4 Large Flat Conducting Plate 259 

Let the charge on each side of the plate be q/2 and define the Gaussian surface to be the 260 

same as that for the insulating plate in §2.2.3.3. The electrostatic field inside a conductor is zero 261 

so that the electric field points away each surface of the plate and 262 

 0 0e e / 2 / 2
S

E A q A     E•dA  so that  263 

 264 

02 e
E




 .           (2.22) 265 

 266 

This electric field again does not depend on distance from the plate. 267 

 268 

2.2.3.5 Two Large Parallel Insulating Flat Plates 269 

 Consider charges ±q that are uniformly distributed over the two surfaces of each plate. 270 

The field between the plates is the vector sum of the fields from each plate. Since the field from 271 

the positively charged plate points away from the positive plate and the field from the negatively 272 

charged plate points toward the negative plate the two fields add up as vectors to 273 

 274 

0e
E




 .           (2.23) 275 

 276 

2.2.3.6 Two Large Parallel Conducting Flat Plates 277 

 The charges ±q on each plate are attracted to the opposite charges on the other plate so 278 

                                                
2 "Infinite" in extent relative to the distance between the plate in order to eliminate edge effects.  
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that the charges on each plate will lie totally on the inside surface and the charge density on each 279 

interior surface is /q A  . Since the effect of one plate on the other has been taken into 280 

account in this case the electric fields do not add up and the field between the plates is again 281 

 282 

0e
E




 .           (2.24) 283 

 284 

The charge density on the outer surface of each plate is zero so that the electric field outside the 285 

plates is also zero. Since eq. (2.6) equates   to D eq. (2.23) yields 0/ eE D  , i.e. eq. (2.12). 286 

 The capacitance is obtained from the voltage difference .V E d V between the plates 287 

and 0q A : 288 

 289 

    0 0
0 0

0 0

e e /
e /

A A dq
C A d k

V Ed

 
 

 
     .      (2.25) 290 

 291 

2.2.3.7 Concentric Conducting Cylinders 292 

 Let the inner and outer radii of two concentric conducting cylindrical plates be a and b, 293 

respectively, let their equal height be h, and let charges +q and –q be uniformly distributed on 294 

the inside surfaces of each plate. Form a concentric cylindrical Gaussian surface of radius 295 

a r b   and height h, so that   0• 2 e
S

d E rh q   E A .Then  02 eE q rh   so that 296 

 297 

0 0

ln
2 e 2 e

b
b

a
a

q dr q b
V Edr

h r h a   

   
     

  
        (2.26) 298 

 299 

and the capacitance is 300 

 301 

 
02 e

ln

hq
C

bV
a

 
             (2.27) 302 

 303 

2.2.3.8 Concentric Conducting Spheres 304 

 Let the inner and outer radii of two concentric spherical conducting plates be a and b, 305 

respectively, and let charges +q and –q reside on the inside surfaces of each plate. Form a 306 

concentric spherical Gaussian surface of radius a r b  , so that 
2

04 e
S

d E r q     E A  307 

and 2

04eE q r    . Then 308 

 309 

2
0 0 0

1 1

4 e 4 e 4 e

b
b

a
a

q dr q q a b
V Edr

r b a ab     

   
   
   


          (2.28) 310 
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 311 

and 312 

04 e
q ab

C
V b a

 
 

   
 

.         (2.29) 313 

 314 

2.2.3.9 Isolated Sphere 315 

 The capacitance of an isolated sphere is obtained from eq. (2.29) by taking the limit 316 

b  and for convenience placing a R : 317 

 318 

04 eC R  .           (2.30) 319 

 320 

Thus larger spheres have larger capacitances. 321 

 322 

2.2.4 Electrodynamics 323 

 Consider a constant voltage V  applied across two parallel plates between which there is 324 

now a conducting medium. Let the resistivity of the material be 
1.R k   (units ohm-meter) and 325 

specific conductivity 1/   (units S m-1), where R is the resistance between the plates in ohms 326 

and the symbol S refers to the SI unit Siemen defined as the reciprocal of the ohm. The current 327 

density J  is the electric current per unit (orthogonal) area (units 2A m ) so that  J E . 328 

Unfortunately the displacement current 0/ /dD dt d dt  (better named as the displacement 329 

current density) has no symbol. 330 

 Electric current, symbol I, is defined as 331 

 332 

dq
I

dt
            (2.31) 333 

 334 

so that the total charge that passes across a plane through which a current I flows is 335 

 336 

0

'

t

q I dt  .           (2.32) 337 

 338 

The electric potential E  is not defined for electrodynamics (see §2.5 below on Maxwell's 339 

equations) and is replaced by the symbol voltage V  (unfortunately also used for the unit volt). 340 

Ohm’s Law for the electrical resistance R (SI unit ohm    is then 341 

 342 
V

R
I

            (2.33) 343 

 344 

and /V A . An electrical conductor is said to be ohmic if, and only if, R is constant. This is 345 

not the same as /dV dI   constant: for example if 1.0 2V I   and 2dV dI   then 346 

3  for 1AR I   , 2.5  for 2AR I   , 2.3  for 3AR I   . 347 
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 Resistances dissipate power P given by P I V  (recall that energy is given by QV and 348 

power is the time derivative of energy). For ohmic resistances 349 

 350 

 

 

2

2/ / .

P I V

I I R I R

V R V V R



 

 

          (2.34) 351 

 352 

2.2.5 Maxwell’s Equations 353 

 These four equations summarize all that is known about electromagnetic phenomena – 354 

they are essentially the electromagnetic equivalent of Newton's laws for mechanics but more 355 

mathematically sophisticated because of the greater complexity of electromagnetic phenomena. 356 

The differential forms of the four Maxwell equations are: 357 

 358 

 D ;           (2.35) 359 

0 B ;           (2.36) 360 

t

 
   

 

B
E ;          (2.37) 361 

t

 
    

 

D
H J            (2.38) 362 

          
t


 

   
 

D
E           (2.39) 363 

          
0e

t




 
   

 

E
E .         (2.40) 364 

 365 

For a vacuum equation (2.38) is equivalent to 366 

 367 

0 0 0e
t

 
 

    
 

E
B J          (2.41) 368 

where   is the specific electrical conductivity (units  1 1 1m Sm    , B  is the magnetic 369 

induction, and H  is the magnetic field. Equations (2.38) - (2.40) merit amplification. The 370 

equation  H J  might perhaps be expected instead of eq. (2.38) but this has the nonsensical 371 

implication that there could never be any sources or sinks of current anywhere at any time, 372 

because the vector identity   0  H  would then imply 0 J . The difficulty is resolved 373 

by noting that for a charging or discharging parallel plate capacitor (for example) charge flow in 374 

the external circuit joining the two capacitor plates, corresponding to 0 /dq dt  where 0q  is the 375 

charge on the capacitor plates (see §2.1.2 above), must be compensated for by an opposite 376 

change of the polarization charges between the plates (to ensure charge conservation). Thus  377 

 378 



Page 12 of 61 

 

 Chap 2 (13)  

  00 i
q q

t t

 
     

 

    
    
    

H         (2.42) 379 

is ensured. 380 

The term / t D  in eq. (2.38) can correspond for example to a localized (molecular 381 

diameter) effective spatial translation of charge due to rotation of an electric dipole about its 382 

center of mass that has a close analogy to an ion hopping to an adjacent site (see §2.2.1.2). It is 383 

called the displacement current. The term displacement “current” has been claimed to be a 384 

misnomer but this is true only if a current is interpreted to be a long range translational migration 385 

of charge. If the definition of current as /dq dt  is adopted it is not a misnomer because q (on 386 

capacitor plates for example) changes with time [eq. (2.42)], and furthermore a traditional 387 

current must be present in an external circuit to compensate for /iq t  . Describing / t D  as a 388 

“fictitious current”, as has been done in at least one popular text book, is disingenuous and 389 

misleading because eq. (2.38) demonstrates that / t D  is just as important in determining a 390 

magnetic field as migration of individual charges. 391 

The vector potential A  is defined by 392 

 393 

 A B             (2.43) 394 

 395 

and 396 

 397 

E
t




  


A
E ,          (2.44) 398 

 399 

and is introduced essentially to ensure consistency between electrostatics and electrodynamics. 400 

Equation (2.43) ensures eq. (2.36) because of the vector identity   0  A  and eqs. (2.43) 401 

and (2.44) together ensure that eq. (2.37) remains true in dynamic situations where E  is 402 

undefined. The vector potential is essentially an extension of the Coulomb potential E  to 403 

dynamic situations because the definition of E  from E
 E  [eq. (2.10)] is definable only in 404 

static situations, as the following consideration indicates: if / 0t  B  then 0 E  by eq. 405 

(2.36) and the static relation  406 

 407 

EE             (2.45) 408 

 409 

could then never hold because of the vector identity   0E   . But E  is known to be 410 

nonzero in dynamic situations (Ohm’s Law!). Similarly if 0J  or / 0t  D  then there is 411 

no potential B  for B  (defined by BB ) because eq. (2.38) then implies 412 
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0
/ 0  H B  because of the same vector identity   0B   . Both these 413 

difficulties are averted by the introduction of A . Equation (2.44) is then consistent with eq. 414 

(2.37) since it guarantees 415 

 416 

E
t t


 
 
 
 

 
     

 

A B
E .        (2.46) 417 

 418 

 Integral versions of Maxwell’s equations include Faraday’s Law: 419 

 420 

magnetic flux;B
B

d
d d

dt



     E s B A       (2.47) 421 

 422 

and Ampere’s law 423 

 424 

0 0 0e ; electric fluxE
Eenclosed

d
d I d

dt
 


     B s E A    (2.48) 425 

 426 

 Equation (2.40) provides a convenient means for demonstrating the equivalence of the 427 

complex permittivity and complex conductivity. First convert eq. (2.40) from a vector equation 428 

to a complex scalar equation: 429 

 430 

0 0

*
e * * e *

E
E

t t


  

   
         

   

E
H E H .     (2.49) 431 

 432 

For a sinusoidal excitation  0
* expE E i t   eq. (2.49) becomes  433 

 434 

     

   

     

0 0 0

0 0

0 0 0

* exp e * exp

* e * exp

* * / e e exp ,

E i t E i i t

i E i t

i i E i t

    

   

    

    

  

     

H

      (2.50) 435 

 436 

indicating that both the complex conductivity  0* e *i    and complex permittivity 437 

 0* */ ei      provide equivalent descriptions of electrical relaxation, as do the resistivity 438 

* 1/ *   and electric modulus * 1/ *M  . All these different functions emphasize or 439 

suppress different facets of experimental data in the same way that Fourier transforms do for 440 

example [see eq. (2.106) below]. 441 

 442 

2.2.6 Electromagnetic Waves 443 

The Maxwell equations together with the constitutive relations 0
e D E  and 0

 B H  444 

predict transverse electromagnetic (em) waves traveling at the speed of light /c n   445 
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 446 

 

   

1/2

0 0

1/2 1/2

0 0

1/ e 1

e

c

n



  
  ,        (2.51) 447 

 448 

where 449 

 450 

 
1/2

n             (2.52) 451 

 452 

is the refractive index. In a nonmagnetic material for which 1   and  
2

* *n   453 

 454 

     
2 2 2 2* ' " ' " 2 ' " * ' "n n in n n in n i               (2.53) 455 

 456 

so that 457 

 458 
2 2' ' "n n              (2.54) 459 

and 460 

 461 

" 2 ' "n n  .           (2.55) 462 

 463 

For the general case of a magnetic material where the relative magnetic permeability is also 464 

complex, * ' "i    , 465 

 466 

      
2 2 2* ' " 2 ' " ' " ' "n n n in n i i               (2.56) 467 

 468 

so that 469 

 470 

          
2 2 2* ' " 2 ' " ' " ' " ' ' " " ' " " 'n n n in n i i i                     , (2.57) 471 

 472 

and 473 

 474 

 " ' " " 'n      .           (2.58) 475 

 476 

Thus absorption of electromagnetic energy by magnetically lossy materials is enhanced by a high 477 

relative permittivity. 478 

 The electric field component of a plane electromagnetic traveling wave of angular 479 

frequency   propagating in the +x direction in a medium with refractive index n and speed c/n 480 

is 481 

  0, exp
nx

E x t E i t
c


  

    
  

,        (2.59) 482 
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 483 

and similarly for the magnetic field component. For complex * ' "n n in   eq. (2.59) becomes 484 

 485 

 
 

0

0

' "
, exp

' "
exp exp

n n x
E x t E i t

c

n x n x
E i t

c c






   
    

   

     
      

    

      (2.60) 486 

 487 

so that E  decays exponentially with distance +x into the medium. The intensity 
2

I E  of em 488 

waves is then 489 

 490 

 2

0

0

' "
exp 2

' 2 "
exp 2 exp

n in x
I E i t

c

n x n x
E i t

c c






   
    

   

     
      

    

      (2.61) 491 

 492 

that is to be compared with Beer’s Law 493 

 494 

 0
expI I x  ,           (2.62) 495 

 496 

where   is the extinction coefficient (usually expressed in neper m-1 where the dimensionless 497 

neper is used to emphasize that the logarithmic form of eq. (2.62) implies the Naperian 498 

logarithm). Equations (2.61) and (2.62) yield 499 

 500 

 
 2 "n

c

 
   .          (2.63) 501 

 502 

 Observe the sign convention for imaginary numbers mentioned in the Introduction of 503 

Chapter One at work here. If the sinusoidal perturbation was defined as 504 

    0, exp /E x t E i t nx c    and the sign of the imaginary component of *  remained 505 

negative then   would have to be negative and Beer’s Law would predict unphysical 506 

exponential growth through a medium. This can be resolved by making the imaginary 507 

component of *  positive but this corresponds to a dipole rotation that leads the excitation 508 

voltage rather than lags it. Nonetheless this is the convention used by electrical engineers and is 509 

the price paid for the “advantage” of having a positive sign in the complex exponential. An 510 

excellent account of phase conventions is given in Chapter One of ref. [2]. 511 

 Insertion of eq. (2.55) into eq. (2.63) yields 512 

 513 
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"

'n c

 
 


 ,          (2.64) 514 

 515 

and since  0
" '/ e    then 516 

 517 

 
 

  0

'

' en c

 
 


 .          (2.65) 518 

Thus ", ", and 'n     are all measures of absorption of electrical energy: 519 

0

' " 2 "

e

n

n c nc c

  
    .         (2.66) 520 

 521 

 Ordinary em radiation comprises randomly distributed directions of polarization for the 522 

E  and B  fields. Radiation for which the direction of polarization is constant and the same for all 523 

waves is said to be polarized. Reflected em waves are partially polarized in the direction parallel 524 

to the reflecting surface, the extent of polarization depending on the angle of incidence. 525 

Polaroid® sun glasses are polarized in the vertical direction and therefore more strongly 526 

attenuate reflected waves. Reflected em waves are fully polarized at the Brewster incident angle. 527 

 528 

2.2.7 Local Electric Fields 529 

 The electric field inside a dielectric medium is not equal to the applied field because of 530 

electrostatic screening by the medium. This is a complicated problem that is well described in 531 

Chapter One of ref. [3] (by N. E. Hill) and has been considered by Onsager [4], Kirkwood [5], 532 

and Frohlich [6]. The complexity is exemplified by the Kirkwood relation between the isolated 533 

molecular dipole moment g  observed in the gas phase and the relative permittivity 0

E  534 

 535 

  
 

2
0 0

0 0

24

9 e 2

E E E E

g

E E
B

Ng

k TV

    

 

 



 



,        (2.67) 536 

 537 

where E  is the limiting high frequency relative permittivity that for a pure dielectric equals the 538 

square of the (limiting low frequency) refractive index n2, N is the number of dipoles in a volume 539 

V, and g is a correlation factor that corrects for nonrandom orientations of surrounding dipoles 540 

caused by direction dependent intermolecular forces. The latter is in principle calculable: 541 

 542 

 1 cos
N

ij

i j

g 


            (2.68) 543 

 544 

where the averaged cosine  cos ij  of the angle ij  between dipoles i  and j  can be 545 

computed for specific orientation geometries. 546 

 The treatment of local field effects on the kinetics of dipole relaxation is even more 547 
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intricate because the reaction field produced by polarization of the dielectric medium by the 548 

embedded dipole is in general out of phase with the applied field. These effects have been 549 

discussed by Mountain [7]. A particularly important effect for relaxation phenomenology is that 550 

a single macroscopic dielectric relaxation time corresponds to two microscopic times. After a 551 

heated debate in the literature the accepted microscopic dipole correlation function is the Fatuzzo 552 

and Mason [8] expression 553 

 554 

 
1

0

0 0

1

0 0

1 exp exp
2 2

1 exp exp
2 2

E E

E D

t t
t

t t

 


    

 

   



 





 

       
           

       

       
           

       

     (2.69) 555 

 556 

where 
E  and D  are again the relaxation times for polarization at constant E and D respectively. 557 

Fulton [9] has given a detailed discussion of this subject in which he deduced that the 558 

longitudinal part of polarization relaxes with a time constant D  and that the transverse 559 

component relaxes with a time constant E . Electrical relaxation is therefore discussed later in 560 

this chapter in two parts - dielectric relaxation and conductivity relaxation. 561 

 562 

2.2.8 Circuits 563 

There are the four fundamental elements in analog passive circuits: resistance R; 564 

capacitance C; self inductance L; mutual inductance M.  565 

 566 

2.2.8.1 Simple Circuits 567 

Resistances in Series and in Parallel 568 

For resistances Rs connected in series, the same current Is must pass through each and the 569 

sum of the voltages across each resistor equals the applied voltage is. Thus 570 

i s iV V IR I R     and the equivalent series resistance is 571 

 572 

s i
R R .            (2.70) 573 

 574 

For resistances pR  connected in parallel the same voltage V must occur across each and 575 

the total current I through the parallel circuit is the sum of the currents through each:576 

i i
I I V R    and the equivalent parallel resistance Rp is given by 577 

 578 

1 1
p i

R R .           (2.71) 579 

 580 

  581 
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Capacitances in Series and in Parallel 582 

 Capacitance C is defined as C q V , where V is the voltage across the capacitor and 583 

q  are the charges on each of its ends. For capacitances Ci connected in parallel the same voltage 584 

V must occur across each and the total charge q on each side of the equivalent parallel 585 

capacitance 
pC must equal the sum of charges qi on each component. Thus p i

i

q C V V C   and 586 

the equivalent parallel capacitance pC is given by 587 

 588 

p i

i

C C .            (2.72) 589 

 590 

 For capacitances connected in series the total voltage V across the series circuit equals 591 

the sum of voltages across each capacitor. The magnitude of the charges q on each must be the 592 

same (since no charge separation can occur across the short circuit joining them) so that 593 

/ /s i i

i i

V q C V q C     and the equivalent series capacitance Cs is given by 594 

 595 

1 1

is i
C C

 .           (2.73) 596 

 597 

Inductances in Series and in Parallel 598 

 The self-inductance L is defined as  / /L V dI dt  where V is the voltage across the 599 

device and I is the current through it. Since V  is in the numerator and I is in the denominator L 600 

is an impedance akin to R. Impedances add in series so the equivalent series inductance is 601 

 602 

s i

i

L L             (2.74) 603 

 604 

and since admittances add in parallel the equivalent parallel inductance is 605 

 606 

1 1

is iL L
             (2.75) 607 

 608 

 The mutual inductance M of a device is defined as  2 1/ /M V dI dt , where V2 is the 609 

voltage induced on one side of the device by a time varying current I1 in the other. Mutual 610 

inductances are usually insignificant in relaxation instrumentation since they only occur in 611 

analog instruments that use transformers that are rarely (never?) used now. Rearrangement of the 612 

definition of M  yields 613 

 614 

 2 1 /V M dI dt ,          (2.76) 615 

 616 
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so that V2 is smaller at lower frequencies when dI1/dt is smaller. This is why transformer arm 617 

(essentially ac Wheatstone) bridges were useless at low frequencies. 618 

 619 

Combined Series and Parallel Elements 620 

 Consider two examples of a general circuit in which an element Z1 is in parallel with a 621 

series combination of two elements Z2 and Z3. If these elements are resistances R1, R2 and R3 then 622 

R23=R2+R3 and  623 

 624 

 
1 2 3

1 2 3 1 2 3

1 1 1

equiv

R R R

R R R R R R R

 
  

 
         (2.77) 625 

 626 

or 627 

 628 

 1 2 3

1 2 3

equiv

R R R
R

R R R




 
.          (2.78) 629 

 630 

 If these elements are capacitances C1, C2 and C3 then 631 

 23 2 3 23 2 3 2 3
1/ 1/ 1/ /C C C C C C C C      and 632 

 633 

2 3 1 2 2 3 3 1
1 23 1

2 3 2 3

equiv

C C C C C C C C
C C C C

C C C C

 
    

 
.     (2.79) 634 

 635 

2.2.8.2 AC Circuits 636 

 If the applied voltage is      0 0
cos Re[ exp ]V t V t V i t     the average voltage over 637 

one period is zero but the ac power is not. Equation (2.34) indicates that power is determined by 638 

the averages of 2I and 2V that are both proportional to the averages of  2sin t  or  2cos t  over 639 

one cycle that are both equal to 1
2 . Thus 640 

 641 

 2 2
0 0 ./ 2 / 2averageP V R I R          (2.80) 642 

 643 

The ac power dissipation is therefore given by the same relation for DC power dissipation if the 644 

maximum ac voltage  0V  and current  0I  are replaced by 0 / 2V  and 0 / 2I  respectively. The 645 

latter are referred to as rms (root mean square) voltages and currents. Electrical outlet ac voltages 646 

such as 120V in North America are given as rms values; the peak voltage in North America is 647 

therefore   
1/2

120V 2 170V . 648 

 AC impedances  *Z i  are defined as    * / *V i I i   and ac admittances  *A i  649 

as    * / *I i V i  . The imaginary components of  *A i  and  *Z i  are referred to as 650 

reactances, and as shown below do not dissipate power. 651 

 652 
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Resistances 653 

 For a voltage  0 expV V i t   applied across a resistance R the current is 654 

 655 

 
 

   0

0
exp exp

R

V i t V
I i t i t V G i t

R R


              (2.81) 656 

so that the impedance is 657 

 658 

 
 

 

 

   
0*

0

* exp

* / exp
R

V i t V i t
Z i t R

I i t V R i t

 


 


  


      (2.82) 659 

 660 

and the admittance    * *1/R RA i t Z i t G    where G is the conductance. Both R and G are real 661 

and independent of frequency. 662 

 663 

Capacitances 664 

For a capacitance C  the current is 665 

 666 

 
   

 0 expC

dq t dV i t
I i t C V i C i t

dt dt

 
               (2.83) 667 

 668 

and the capacitive impedance is 669 

 670 

 
 
 

 

 
0*

0

* exp 1

* exp
C

C

V i t V i t i
Z i t

I i t i C CV i i t

 


    
 


   

 
     (2.84) 671 

 672 

and the capacitive admittance is 673 

 674 

 *

CA i t i C   .          (2.85) 675 

 676 

The capacitive admittance and admittance are therefore frequency dependent and imaginary 677 

(thus a reactance). Power dissipation per cycle in a capacitance is given by 678 

 679 

           

   

   

2

0 0 0

2

0

2 2

0 0

exp exp exp 2

cos 2 sin 2

cos 2 sin 2 0

C C C p p

p

p p

P t V t I t V i t V i C i t V C i t

V C t i t

V C t iV C t

    

  

   

            

      

       

 (2.86) 680 

 681 
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because the averages of both  cos 2 t  and  sin 2 t  over one cycle are zero. The capacitive 682 

impedance is therefore not a resistance if "resistance" is taken to imply power dissipation. This is 683 

the why an inductive or capacitive impedance is not considered to be an "ac resistance". For the 684 

phase convention adopted here the reactance is capacitive if the imaginary part of the complex 685 

admittance is negative and is inductive if the imaginary part of the complex admittance is 686 

positive. 687 

 688 

Inductances 689 

 For a self-inductance L the current is 690 

 691 

 
   0 0

exp exp
L

V i t i tVV
I t dt dt

L L L i

 




     
      

    


 
 

    (2.87) 692 

 693 

so that inductive impedance is 694 

 695 

 
 

 
*

*

*
L

L

V i t
Z i t i L

I i t


 


            (2.88) 696 

 697 

and the inductive admittance is 698 

 699 

 * 1
L

i
A i t

i L L


 
 


.         (2.89) 700 

 701 

The inductive reactance is therefore also imaginary and frequency dependent. Power dissipation 702 

in an inductance is given by 703 

 704 

       
 

   

0
0

2 2

0 0

exp
exp

exp 2 exp 2 0.

L L L

i tV
P t V t I t V i t

L i

V V
i t i t

i L i L






 
 

 
        

     


     (2.90) 705 

 706 

Thus the power dissipated by a pure inductance is zero just like that of a capacitance ("pure" 707 

meaning negligible resistance). 708 

 709 

Parallel Resistance and Capacitance 710 

 Consider a voltage  0 cosV V t  applied across a resistance Rp in parallel with a 711 

capacitance Cp. The current IR through the resistance is 712 

 713 

 
   0

0 0

cos
cos Re expR p p

p p

V tV
I V t G V G i t

R R


            (2.91) 714 
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 715 

where Gp = 1/Rp is the conductance. The current through the capacitance IC is 716 

 717 

 

   

0

0 0

sin

cos / 2 Re exp

C
C p p

p p

dq dV
I C V C t

dt dt

V C t iV C i t

 

    

   

      

     (2.92) 718 

 719 

where qC is the charge on the capacitor. Equation (2.92) implies that the sinusoidal 720 

(displacement) current IC lags the applied voltage by π/2 radians because 721 

   sin cos / 2t t    . The total current through the parallel RpCp circuit is 722 

   

   

  

0 0

0 0

0

cos sin

Re exp Re exp

Re exp .

R C p p

p p

p p

I I I V G t V C t

V G i t iV C i t

V G i C i t

  

  

 

   

          

    

     (2.93) 723 

The phase relations for the current are therefore conveniently expressed by defining the parallel 724 

combination of resistance and capacitance as a complex admittance A* 725 

* p pA G i C  ,          (2.94) 726 

or as a complex impedance Z* 727 

2 2 2 2 2 2

1
* 1/ *

p p

p p p p p p

G i C
Z A

G i C G C G C



  
   

  
.      (2.95) 728 

The complex capacitance is 729 

*
*

p

p

iGA
C C

i 
  


          (2.96) 730 

and the complex electric modulus is 731 

     * 1/ * *M i C i i Z i     .        (2.97) 732 

Equation (2.95) is equivalent to 733 

2 2 2 2
*

1 1

p p D

D D

R iR
Z



   
 

 
         (2.98) 734 

where 735 

D p pR C             (2.99) 736 

is the Maxwell relaxation time (the reason for the subscript D is given below). 737 

 When normalized by the cell constant k (dimensions m1) the quantities A*, Z* and C* 738 

become respectively the complex conductivity * *kA  , complex resistivity * */Z k  , and 739 

complex relative permittivity 0 0* */e */kC C C    where C0 is the capacitance of the 740 

measuring cell in a vacuum (usually equated to that in air). 741 

 The reciprocal of  * i   is the complex electric modulus 742 

 743 
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           (2.100) 744 

 745 

so that  746 

 747 

2 2 2 2

' "
' ; "

' " ' "
M M

 

   
 

 
.        (2.101) 748 

 749 

Series Resistance and Capacitance 750 

 For a resistance Rs in series with a capacitance Cs 751 

 752 

 
1

* ,E
s s s

s s E

ii
Z i R R R

i C C




  

 
      

 
      (2.102) 753 

 754 
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     (2.103) 755 
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    (2.104) 757 

 758 
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  (2.105) 759 

 760 

where E s sR C   and is not generally equal to D p pR C  . 761 

 The relations between the four response functions are conveniently summarized by [1,10] 762 

 763 

   

     0 0

* 1/ *

* / e e / *

i M i

i i i i

  

     





.        (2.106) 764 

 765 

2.2.8.3 Experimental Factors 766 

Cable Effects 767 

 Cable impedances can be analyzed using transmission line techniques that invoke an 768 

infinite number of {L,C} components. One line of the cable is considered to be a series of 769 

inductances L and the other line as a zero impedance wire, with capacitances C connecting the 770 
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two between every pair of inductances. In the limit of an infinite number of inductance and 771 

capacitance elements the cable impedance is  
1/2

/cableZ L C  and is real and constant. Coaxial 772 

cables are made so that C is 30 pF/ft and L is 0.075 / ftH  so that 773 

 
1/2

8 117.5 10 / 3.0 10 50cableZ H      . Thus a short cable with a 50  resistor across it looks 774 

like an infinitely long cable and a 50  load on the cable has an ideal impedance match for 775 

maximum power transfer (see electrical engineering texts). Such a cable will also behave as an 776 

inductor if short circuited so that for a high conductivity attached sample resonance effects may 777 

be significant. 778 
 779 

Electrode Polarization 780 

This occurs for two and three terminal measurements when charge transfer does not 781 

occur between an electrode and the sample material, i.e. when the applied voltage is less than the 782 

decomposition potential of the sample (four terminal measurements are immune to this but they 783 

do not produce reliable capacitance data and require separate sample preparation). In this case 784 

the contact can be approximated as a large capacitance Cs in series with the sample [11-13]. If 785 

the amplitude of the applied potential is too large (above the decomposition potential of the 786 

electrolyte) a Faradaic impedance [14, 15] will also occur in parallel with this capacitance [16] 787 

that can sometimes be approximated as a Warburg impedance. 788 

A series capacitance does not affect  "M   and simply adds 1/Cs to  'M  : the total 789 

impedance  *

totalZ i  of the sample impedance  *Z i  and sC  is 790 

   * * 1total sZ i Z i i C     so that 791 

 792 

   ** * 1total sM i i Z i Z i C      .       (2.107) 793 

 794 

It is a considerable advantage of the electric modulus function that  "M   is unaffected by 795 

electrode polarization and other high capacitance phenomena. This is exploited in some of the 796 

methods of data analysis discussed below but it is noted that this advantage is not shared by the 797 

imaginary component of the resistivity "  because 798 

 799 

 
0 0

1
lim " lim

sk C 
 

 

 
   

 
.        (2.108) 800 

 801 

The low frequency behavior of '  can be useful (see below). Electrode polarization can make 802 

the direct determination of the low frequency quantities 0  and 0  difficult and sometimes 803 

impossible because it increases '  above 0  at low frequencies and, usually at lower 804 

frequencies, decreases '  to below 0 . Overlap between bulk relaxations and these two 805 

electrode polarization effects often prevents the observation of limiting low frequency plateaus in 806 

 '   and/or  '  . Although relaxation of electrode polarization occurs at lower frequencies 807 

than the bulk relaxation, 808 
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 809 

00

0 0 0 0

ps
electrode D

єє CC

C C
 

 
   ,        (2.109) 810 

 811 

the magnitude of the polarization dispersion can be very large [proportional to  s p sC C C  ] 812 

and its high frequency tail can extend well into the bulk relaxation region. This phenomenon is 813 

illustrated by the following representative average circuit quantities: a parallel capacitance 814 

10pFpC   and parallel resistance 710 ohmpR   in series with a polarization capacitance of 815 

4
10 pF

s
C  . Because both Rp and Cp will have distributions in a typical electrolyte there will be 816 

dispersions in both '  and ' . The dispersion is centered around   4 11/ 10 sp pR C    and 817 

the low frequency plateau in '  would normally be seen at ca. 
2 1

10 s


 , but this is dwarfed by 818 

the polarization capacitance at that frequency,     
1

' 2 2 2/ 100pFpol p s s p sC R C C R C 


   , 819 

an order of magnitude higher than Cp. On the other hand, the low frequency dispersion in 820 

conductivity due to polarization has barely begun at 210  : 821 

 2 2 2 2
0/ / 1 0.99ele ele ele         for   2 110 10 10p sele R C     , where the fact 822 

that the limiting high frequency conductivity for the Debye-like relaxation of electrode 823 

polarization is 0 : 824 

 825 

     0 0 0 0 0 0'

0 0, ,

0 0

e e
lim for 
ele

ele ele ele
ele ele ele

E D


       
   

   

   




  
      (2.110) 826 

 827 

Effects similar to electrode polarization can arise from other causes, such as poor electrode 828 

contact where a capacitance due to air gaps occurs in parallel with a resistance at the contact 829 

areas. Poor contacts have been shown to give spurious dielectric losses in un-doped alkali halides 830 

[17], and is suspected to be responsible for the poor reproducibility of other dielectric data for 831 

alkali halides [18]. Space charge effects can also produce a series capacitance at the electrode 832 

[19,20]. 833 

 834 

2.3 Dielectric Relaxation 835 

 An excellent resource for dielectric relaxation that is ref. [3], particularly Chapter One by 836 

N. E. Hill. An excellent review of dielectric relaxation phenomena in supercooled and glassy 837 

materials is given by Richert [21] that also includes references to modern measurement 838 

technology. 839 

 840 

2.3.1 Frequency Domain 841 

2.3.1.1 Dipole Rotation 842 

 A freely rotating dipole in a sinusoidally varying electric field with an angular frequency 843 

   low enough that the dipole can keep up with the field behaves as a pure capacitance pureC . 844 

The current then lags the field by π/2 radians and the complex admittance is 845 
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 846 

* pureA i C .           (2.111) 847 

 848 

If the dipole cannot keep up with the field because of friction with its environment it will lag by 849 

an additional angle  and a component of the current appears in phase with the voltage and is 850 

measured as a resistance. Thus eq. (2.92) is replaced by 851 

 852 

 

   

   

0

0

0

cos / 2

cos / 2 cos sin / 2 sin

sin cos cos sin

C p

p

p

I V C t

V C t t

V C t t

   

      

    

   

      

    

     (2.112) 853 

 854 

and the term  0 cos sinpV C t    in eq. (2.112) is indeed in phase with the applied voltage 855 

 0 cosV V t  . Note that this in-phase component is zero when 0  . Comparing eq. (2.112) 856 

with eqs. (2.93) and (2.94) reveals that 857 

 858 

* sin cospure pureA C i C             (2.113) 859 

 860 

And 861 

 862 

* ' " cos sinpure pureC C iC C iC            (2.114) 863 

 864 

so that 865 

 866 

(effective) sinp pureG C           (2.115) 867 

 868 

and 869 

 870 

(effective) cosp pureC C  .         (2.116) 871 

Note that at low frequencies when the lag angle   tends to zero the effective capacitance equals 872 

pureC  and Gp = 0 as must be. When normalized by the geometric capacitance associated with the 873 

cell constant k, 0 0e /C k  where  is the vacuum permittivity 
128.854 10  F m-1, the complex 874 

capacitance becomes the complex permittivity, 0* */C C   so that 875 

 876 

* ' "i               (2.117) 877 

 878 

where  879 

 880 



0e
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   0

0

' cos
pC

C
        ,         (2.118) 881 

   0

0 0 0

" sin
p pG C

C e C


   

 
   

 
,       (2.119) 882 

 883 

and 884 

 885 

"
tan

'

p

p

G

C




 
  .          (2.120) 886 

 887 

Note that tan  is independent of the geometric capacitance  and has the same frequency 888 

dependence as "  but with a retardation time of  
1/2

0

E E

E  
 rather than E . Equations (2.113) 889 

and (2.114) imply 890 

0* *A i C             (2.121) 891 

so that 892 

0* * e *kA i              (2.122) 893 

and 894 

0

1 1
*

* e *i


  
             (2.123) 895 

 The complex electric modulus M* is defined as the reciprocal of * : 896 

* 1/ *M             (2.124) 897 

so that  898 

 899 

0 0* * e *M i C Z i                        (2.125) 900 

 901 

The functions * , * , *  and *M  are all analytical and their components all conform to the 902 

Cauchy-Riemann and Kronig-Kramers equations. 903 

 For a single relaxation time the (Debye) functions  * i  ,  '   and  "   for 904 

dielectric relaxation are  905 

 
 0

*
1

E E

E

E

i
i

 
  








 


,         (2.126) 906 
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E E

E
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,         (2.127) 907 

and 908 

 
 0

2 2
"

1

E E

E

E

  
 

 





,         (2.128) 909 

0C
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where 
0

E  and E  are defined in §2.1.1 as the limiting low and high frequency limits of  '   910 

respectively. Equations (2.127) and (2.128) yield a complex plane plot of "  vs '  that is a 911 

semicircle centered on the real axis at  0' / 2E E    . This is found by eliminating 
E  912 

between equations (2.127) and (2.128). 913 

The corresponding Debye functions for  '   and  "   are 914 

   
  2

0 0

0 2 2

e
' e "

1

E E

E

E

   
   

 


 


       (2.129) 915 

and 916 

 
 0 0

0 2 2

e
" e

1

E E

E

E

  
  

 






 


.        (2.130) 917 

 918 

Thus the real part of the conductivity of a Debye dielectric increases from zero at low 919 

frequencies to a high frequency limit of 920 

 921 

   0 0lim ' =e /E E

E


      


          (2.131) 922 

 923 

and the imaginary part diverges at high frequencies. Derivations of the Debye expressions for 924 

 'M   and  "M   are instructive and straightforward but tedious – they are given in Appendix 925 

2.1. The results are 926 

 927 
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        (2.132) 928 

and 929 

 
 0
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1

D D

D

D

M M
M




 

 



,         (2.133) 930 

 931 

where 0 01/D DM  , 1/D DM   , and  0/D D

E D     . 932 

 If a limiting low frequency conductivity 0  is present that is not physically related to the 933 

dielectric loss process (e.g. ionic conductivity in a dilute aqueous solution), it must be subtracted 934 

from the measured conductivity before the dielectric loss is calculated from eq. (2.128). 935 

Otherwise the limiting low frequency dielectric loss 
0

lim " 0





  will be masked by the rapid rise 936 

from the conductivity contribution 937 

 938 

0

0 0
0

lim " lim
e 




 
  .         (2.134) 939 
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 940 

It has been argued that this subtraction is physically meaningful only if the conductivity is 941 

unrelated to the dielectric loss process (as in the aqueous solutions mentioned above, for 942 

example). If the dielectric loss peak correlates with 0  as occurs in alkali silicate glasses [22-28] 943 

then the subtraction of 0  can be regarded as artificial and other methods of data analysis are 944 

preferred (although this position is not universally accepted). This is the principle reason for not 945 

using the complex permittivity in analyzing highly conducting materials and is the subject of 946 

§2.4. 947 

 If the decay function is nonexponential dielectric relaxation can be described in terms of 948 

a distribution of retardation times  ln Eg   defined by the relations 949 

 950 

   ln exp lnE E E

E

t
t g d  







 
  

 
         (2.135) 951 

and 952 

 ln ln 1E Eg d 




           (2.136) 953 

 954 

so that eq. (2.126) generalizes to 955 

 956 

 
 

0

ln
* ln

1

EE E E

E

E

g
d

i


    





 



  






.       (2.137) 957 

 958 

The generalization of eqs. (2.127) and (2.128) are 959 

 960 

       0 02 2 2 2

1
' ln ln

1 1

E E E E E E E
E E

E E

g d


         
   



   



 
      

  
   (2.138) 961 

and 962 

       0 02 2 2 2
" ln ln

1 1

E E E EE E
E E

E E

g d
 

       
   



 



   
  .   (2.139) 963 

 964 

The thn  moments of a distribution function are 965 

 966 

 ln lnn n

E E E Eg d   




  .         (2.140) 967 

 968 
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If the integral  ln lnE Eg d 




  diverges, as it does for a constant phase angle impedance for 969 

example,  ln Eg   is not renormalizable and a constant phase angle impedance can therefore be 970 

valid only over a limited range in relaxation times. In terms of  t  the moments are  971 

 972 

 
 1

0

1n n

E t t dt 





           (2.141) 973 

 974 

and 975 

 976 

 
 

0

1

n
n En

E n

t

d

dt


 



 
   

 
          (2.142) 977 

 978 

2.3.1.2 Ionic Hopping 979 

 Chapter One of [3] by N. E. Hill discusses the studies of Frohlich [6] and others on the 980 

dielectric relaxation consequences of two state models. We select here the Frohlich account of an 981 

entity that has only two possible equilibrium positions 1 and 2. The entity could be a molecular 982 

dipole or an ion for example. If the transition probabilities between the two positions are w12 and 983 

w21 when there is no applied field then a Debye relaxation with a single relaxation time 984 

12 211/ ( )E w w    is predicted that has an Arrhenius temperature dependence 985 

 exp /E A H RT    where the pre-exponential factor A is a weak function of temperature and 986 

H  is the energy barrier that separates the two positions. As noted by Hill, however, a 987 

nonexponential decay function may result from local field effects. 988 

 989 

2.3.2 Time Domain 990 

 Consider the case where an electric field E is "instantaneously" increased from zero to E0 991 

across a dielectric sample at time 't t  and kept constant thereafter, i.e.    0
'E t E h t  where 992 

h(t) is the Heaviside function (see eq. (1.327) in Chapter One). The initially randomized dipoles 993 

will partially orient themselves over time and the polarization and displacement will both 994 

increase (the final average orientation will not be complete because of thermal fluctuations): 995 

 996 

         0 0 1 ED t D D D t           ,       (2.143) 997 

 998 

where  0D  and  D   are the limiting short time (high frequency) and long time (low 999 

frequency) values of D(t) and  E t  is the decay function for polarization at constant E 1000 

corresponding to  D t . The increase of D from zero to  D   is "instantaneous" compared with 1001 

dielectric relaxation times (generally no shorter than about 1110  s) and is due to polarization of 1002 

molecular electron clouds that occurs roughly on optical time scales. 1003 

 It is sometimes convenient to approximate the relation between time domain data and 1004 
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 "   by the Hamon approximation 1005 

 1006 

   0

5
" E E Ed t

dt


   




  
    

  
,        (2.144) 1007 

 1008 

obtained from the simplification that the normalized displacement current is given by 1009 

 1010 

~ nEd
t

dt

  
 
 

 .          (2.145) 1011 

 1012 

No comparably simple relation exists between  and . Williams, Watt, Dev and North 1013 

[29] have shown that for the Williams-Watt [30] decay function 1014 

 1015 

          (2.146) 1016 

 1017 

the Hamon approximation is accurate within 1% for 0 1   but fails for 0 1   and 0.2  . 1018 

Equation (2.144) therefore offers a high frequency approximation to the frequency domain 1019 

Williams-Watt function that cannot be expressed in terms of named functions. 1020 

 The complex relative permittivity is related to the derivative of  by 1021 

 1022 

     0

0

* expE E E Ed
i i t dt

dt


     



 

 
     

 





       (2.147) 1023 

 1024 

where  0 0
/D E    and   0

/0D E

 . In the simplest case  E t  is exponential, 1025 

 1026 

  expE

E

t
t



  
   

  
          (2.148) 1027 

 1028 

and insertion of eq. (2.148) into eq. (2.147) yields the Debye equations (2.127) and (2.128) 1029 

[Chapter One of ref. 3]. 1030 

 1031 

2.3.3 Temperature Domain 1032 

 In many situations  and  are approximately interchangeable variables. Since  1033 

often varies strongly with temperature a narrow temperature range can be used as a surrogate for 1034 

 '   t

 
0

exp
t

t






  
   
   

 *   t


E E
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a wide frequency range. The temperature dependence of 
E  is approximated over small ranges in 1035 

temperature T by the Arrhenius relation 1036 

0 exp aE

RT
 

 
  

 
,          (2.149) 1037 

where 0  is independent of temperature, R is the ideal gas constant, and Ea is the activation 1038 

energy. Thus the variables  ln   at constant   and Ea/RT are equivalent for a single 1039 

relaxation time dielectric. In this case eq. (2.149) indicates that over the convenient temperature 1040 

range from liquid nitrogen (77 K) to room temperature (300K) the retardation time can vary over 1041 

a very large range. For example   changes by a factor of 2510  for an activation energy of 50 1042 

kJ/mol. The temperature variable is therefore extremely useful for scans of the total relaxation 1043 

spectrum and is frequently used for polymers whose relaxation behavior is typically 1044 

characterized by widely separated and very broad relaxation processes. Activation energies Ea 1045 

are obtained from plots of log frequency ln f  against the inverse temperature 1/Tmax at which "  1046 

or tan  passes through its maximum: 1047 

 1048 

 
ln

1/

aE d f

R d T

 
   

 
.          (2.150) 1049 

 1050 

It has been reported [32] that the activation energy obtained in this way is ambiguous because it 1051 

depends on whether the derivative is determined in the isothermal frequency domain or in the 1052 

temperature domain at constant frequency: the frequency domain plot of lnfmax vs. 1/T was found 1053 

to be strongly curved whereas the plot of lnf vs. 1/Tmax was found to be linear. 1054 

Although temperature is useful because of its experimental convenience it is not 1055 

quantitative because essentially everything changes with temperature. For example the 1056 

dispersion  0

E E   can only be estimated because both 0

E  and to a much less extent E  are 1057 

temperature dependent. The dispersion  0

E E   can be estimated from the relation [33] 1058 

 1059 

     
1

0

0

2 1
" 1/E E

A

T d T
R E

  


 



 
   

 
        (2.151) 1060 

 1061 

but this is approximate because of two assumptions in its derivation that must be made for 1062 

mathematical tractability: (i)  0

E E   is independent of temperature [32] and (ii) 
1

1/a aE E


  1063 

that is not generally true because of the Schmidt inequality (Chapter One) 1064 

 1065 
1

1/ 1A AE E

 .          (2.152) 1066 

 1067 

The approximation is clearly better for smaller temperature ranges. There are two situations 1068 

where ln  and Ea/RT are not even approximately equivalent: (i) functions for which   and E  1069 
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are not invariably multiplied together (for example the conductivity of a Debye dielectric, eq. 1070 

(2.128)); (ii) distributions of retardation times that change with temperature. 1071 

 1072 

2.3.4 Equivalent Circuits 1073 

 The electrical response for an exponential dielectric decay function, the Debye relations 1074 

eqs. (2.127) and (2.128) plus any separate conductivity contribution E , is simulated by an 1075 

equivalent circuit comprising three parallel arms: a capacitance Cp, a series combination of sR  1076 

and sC , and a resistance pR . The relaxation part of the circuit is the series component s sR C  1077 

the parallel resistance pR  corresponds to the separate conductivity and the parallel capacitance 1078 

pC  simulates the limiting high frequency permittivity. If for a particular range of frequencies the 1079 

equivalent circuit of an experimental sample resembles s sR C  and the frequency range 1080 

encompasses  1/
s s

R C   then a dielectric loss peak will be observed in that frequency range. 1081 

An example is electrode polarization in a conducting medium that at low frequencies is 1082 

approximated by an electrode capacitance in series with the low frequency resistance of the 1083 

sample. In this case a dielectric loss is observed with a retardation time given by the product of 1084 

the polarization capacitance and sample resistance. Electrode polarization effects in solid 1085 

electrolytes can often be a serious problem and are discussed in §2.3.6.1 and §2.3.6.4 below. 1086 

In terms of the equivalent circuit the components of the complex permittivity are (see 1087 

Appendix 2.3) 1088 

 1089 
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        (2.153) 1090 

 1091 

and  1092 

 1093 
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e 1 e
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.       (2.154) 1094 

 1095 

that reproduce the Debye relations eqs. (2.127) and (2.128). The low and high frequency limits 1096 

of '  are 1097 

 1098 

  0
0

0

lim '
p sC C

C
  



 
   

 
         (2.155) 1099 

 1100 

and 1101 

 1102 

 
0

lim '
pC

C
  



 
   

 
.         (2.156) 1103 

 1104 
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Matlab®/GNUOctave codes for computing  *M i  and  * i   with the added Rp are given in 1105 

Appendix 2.2. A notable result is that  *M i  exhibits two relaxations corresponding to the 1106 

Debye relaxation and an additional relaxation due to 0 . The Debye relaxation for  *M i  is 1107 

unaffected by Rp but the conductivity relaxation due to 0  is.  1108 

 The occurrence of a dielectric and conductivity relaxation together raises an important 1109 

nomenclature issue that has produced much confusion: the subscripts for denoting limiting low 1110 

and high frequency limits can be ambiguous because these limits can refer to either the average 1111 

dielectric relaxation frequency or to the average conductivity relaxation frequency. In particular, 1112 

the quantity   that enters into the expression for the conductivity relaxation time, 1113 

0 0e /D   , is the high frequency limit for the conductivity relaxation, that may correspond 1114 

to the low frequency limit for a separate dielectric relaxation. A proposed nomenclature to 1115 

resolve this ambiguity was given above in §2.1. 1116 

 The “absolute” high frequency limits   and 0 , rather than 1117 

 , ,0E    are 1118 

 1119 
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       (2.157) 1120 

 1121 

and 1122 

 1123 
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      (2.158) 1124 

 1125 

2.3.5 Interfacial Polarization 1126 

In a homogeneous material 0
e 0   D E  implies 0 E . At the interface between 1127 

two dielectric materials of different permittivity, however, there is a discontinuity in   and 1128 

0 D  no longer implies 0 E . The solution to this problem is obtained by applying 1129 

Gauss’s and Stokes’ theorems to the interface with the result that the tangential component of E  1130 

is continuous across the interface and the normal component of D  is either continuous (no 1131 

interfacial charge) or discontinuous if there is a free charge (not the result of polarization of the 1132 

materials on each side of the interface). These boundary conditions make interfacial effects 1133 

dependent on the geometry of the interface. 1134 

 Relaxation of interfacial polarization between alternating slabs of insulating dielectric 1135 

and conducting layers, generically referred to as a Maxwell Layered Dielectric, is characterized 1136 

by a single relaxation time i  given by 1137 

 1138 
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0
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e
eR R

i s s

C C

R C


 


    
      

    
       (2.159) 1139 

 1140 

where R  is the thickness of the resistive layer with material resistivity   and C  is the 1141 

thickness of the capacitive layer with material permittivity  . 1142 

 1143 

2.3.6 Maxwell-Wagner Polarization 1144 

 Relaxation of interfacial polarization between a conducting sphere embedded in a 1145 

dielectric continuum is known as Maxwell-Wagner (MW) polarization. Wagner [34] computed 1146 

the observed loss tangent  tan  for a volume fraction   of spheres of material conductivity 1  1147 

and relative permittivity 1  suspended in a dielectric medium of relative permittivity 2 , that was 1148 

then generalized by Sillars [35] to suspensions of nonspherical particles. An excellent discussion 1149 

of the phenomenon is given in ref [3] from which much of the following is distilled. We also 1150 

draw from the paper by van Beek [36] who gave the Sillars formula and then considered the 1151 

special case of suspended spheres, and noted that the often cited Wagner formula is only correct 1152 

when the permittivities of the suspended material and the dielectric medium are equal and that 1153 

the Sillars expression does not have this flaw. 1154 

 The Sillars expression is 1155 

 1156 
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          (2.161) 1161 

 1162 

where a is parallel to the field direction and n is a function of the aspect ratio a/b of the 1163 

suspended particles. The limiting values for n are  1164 

 1165 
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     (2.162) 1166 

 1167 

Equation (2.162)(c) indicates that for needle-like particles oriented in the direction of the field 1168 

the value of n can be large – for example n ~ 50 for a = 10b. Because tan  is roughly 1169 

proportional to n2 [eqs. (2.160) and (2.161)] the Maxwell-Wagner-Sillars effect can produce very 1170 

large dielectric losses. For spherical particles 1171 
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          (2.163) 1173 

 1174 

and 0  is unchanged. The maximum value of tan  is therefore 1175 

 1176 
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.        (2.164) 1177 

 1178 

This expression is inconveniently complicated but simplifies when 0  : 1179 

 1180 
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          (2.165) 1181 

 1182 

The components of the complex relative permittivity for the Maxwell-Wagner phenomenon 1183 

 0   are conveniently expressed using three ancillary functions [36]: 1184 

 1185 
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 1191 

Then  1192 
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           (2.169) 1194 

 1195 

and 1196 

 1197 
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          (2.170) 1198 

 1199 

The maximum in the observed dielectric loss "

MW  is therefore 1200 
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      (2.171) 1202 

 1203 

that occurs at an angular frequency max  given by 1204 

 1205 
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1/
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.         (2.172) 1206 

 1207 

At max  the value of '  from eq. (2.170) is 2
0

lim '


 


  that when combined with eq. (2.171)1208 

produces eq. (2.165). 1209 

 1210 

2.3.7 Examples 1211 

 Attention is restricted to the dielectric relaxation of water. Emphasis is given to those 1212 

techniques that extract information that cannot easily be obtained using the usual formalisms. 1213 

 1214 

2.3.7.1 Liquid Water 1215 

 Water is one of the few liquids that relaxes with a single retardation time (or very close to 1216 

it) and therefore has a Debye complex permittivity. Its dielectric relaxation frequency depends on 1217 

temperature but always lies within the microwave region of the em spectrum. This has important 1218 

implications for both navigational and meteorological radar and is of course the basis for 1219 

microwave cooking. The temperature dependence of the retardation time is not Arrhenius but 1220 

rather adheres to the empirical Fulcher equation (1.543) 1221 

 1222 
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          (2.173) 1223 

 1224 

with parameters 13

0 1.25 10    s, 669B   K, 
0 138T   K that accurately describes  T  down 1225 

to the limit of supercooling of water, ca. 
0

35 C . The relaxation frequency  1/ 2   therefore 1226 

varies between 62 GHz at 0o C and 74 GHz at 100 oC and the energy absorption at 100 oC is 1227 

about 75% that at 0 oC. Microwave ovens generally operate at a frequency 2.45 GHz that lies on 1228 

the low frequency side of the Debye dielectric loss peak - the dielectric losses at these 1229 

temperature extremes are about 4.0% and 3.3% of the maximum loss at  1/ 2  Hz. 1230 

 1231 

2.3.7.2 Supercooled Water 1232 

 Maxwell-Wagner polarization has been used to obtain the relative permittivity of 1233 

supercooled water down to about -350C [37, 38]. The Maxwell-Wagner losses occur in the 1234 

frequency range 5 610 10  Hz that is far below the frequency range for the dielectric relaxation of 1235 

water (around 1010  Hz). Thus the measured values for the relative permittivity of water 1236 

correspond to the limiting low frequency values 0 80  . This range is also far above the 1237 

relaxation frequency for ice that is about 3.510  Hz at 0oC and decreases with decreasing 1238 

temperature, so that if crystallization occurred the relevant relative permittivity of ice is the 1239 

limiting high frequency value 5 . It is fortunate that the Maxwell-Wagner losses occur at 1240 

frequencies between the relaxation frequency ranges of water and ice. 1241 

 Emulsions of water in heptane stabilized by the surfactant sorbitol tristearate [37] and 1242 

droplets suspended in beeswax [38] both exhibit Maxwell-Wagner polarization. In the first and 1243 

rigorous beeswax study by Hasted and Shahidi [38] volume fractions of 0.5% and 1.0% were 1244 

used. Hodge and Angell [37] later used a much larger volume fraction of water (30%) that was 1245 

necessitated by their much lower instrumental sensitivity. Their data were stated to be 1246 

inconsistent with the Maxwell-Wagner formulae because their values of max"  were claimed to 1247 

be about four times larger than predicted and their sign of    max 1" / /d dT d dT   was positive 1248 

rather than negative as predicted by their eq. (3). However their eq. (3) is incorrect – the 1249 

numerator term 2

2  of eq. (2.171) was given as 2

1  so that the analyses of *

MW  given in [1] and 1250 

[37] are both incorrect. Equation (2.171) predicts that max"  is indeed inversely proportional to 1251 

1  if 1 2   (a good approximation for water droplets in hexane). The analyses in terms of the 1252 

electric modulus [1,37] are unaffected and remain valid although the stated requirement that a 1253 

series capacitance that simulates the surfactant layer around the droplet needs to be large for the 1254 

modulus analysis to be useful [1] is not correct (see eq. (2.107) above). 1255 

 The observed maxima in "  decreased with decreasing temperature that is consistent 1256 

with eq. (2.171), but for 1 2100 2    and 0.3   the predicted value is about 1257 

     "

max 9 0.3 (4) / [2 106 ] 0.005   , compared with the experimental values that range 1258 

between about 0.4 – 0.8. The predicted value is therefore too large by a factor of about 100. 1259 

Also, the measured ratio of max"  at the temperature extremes of 0oC and -35oC is about 1.8 1260 
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compared with the correct value of about 1.2. The observed values of max  for "  were centered 1261 

around  6 72 5.5 10 3.5 10 rad/sHz     from which eq. (2.172) predicts a conductivity of about 1262 

     1 0 1 2 1 2 maxe 2 / 1                 12 79 10 F/m 230 3.5 10 / 0.7  1263 

   12 79 10 F/m 230 3.5 10 / 0.7 0.1 S/m     that is impossibly high. Thus the observed "  1264 

data greatly differ from the Maxwell-Wagner predictions. 1265 

 The measured modulus peak heights also decreased with decreasing temperature and 1266 

since 
"

max
M  is assumed to be inversely proportional to the permittivity this trend is also in the 1267 

correct direction. Values of 1  for water were then derived by assuming that max 1" 1/ ,M   1268 

fixing the proportionality constant from literature data for 1  at 0 0C and then least squares fitting 1269 

a quadratic in temperature to eight data points between 00C and 35  0C. Agreement with the 1270 

earlier results, of which the authors were unaware at the time of paper submission (see Note 1271 

added in Proof in [37]), was within the ±2% uncertainties claimed for each method but the 1272 

agreement is better than this because most of the discrepancies are systematic due to the different 1273 

values of 1  at 0oC for the two methods (measured in [38] but chosen from the literature as a 1274 

proportionality constant in [37]). When this is corrected for by equating the average of the 1275 

modulus derived permittivities to the average from reference [38] the differences are reduced to 1276 

0.5% or less (column four in Table 1). This is a remarkable result given the simplifications used 1277 

in the modulus analysis. 1278 

 These results can be rationalized in terms of a simplified equivalent circuit for the 1279 

emulsified water droplets: a parallel (R1C1) element corresponding to the water droplet with 1280 

relative permittivity 1  and conductivity 1  in series with a capacitance Cs simulating the 1281 

suspected thin layer of interfacial material, and a capacitance C2 in parallel with the series 1282 

combination corresponding to the surrounding heptane. Intuitively, C2 is much smaller than C1 1283 

from both geometrical and physical considerations  1 2  . The circuit analysis is: 1284 

(i) Admittance A1 of parallel (R1C1) element: 1285 

    1 1 1 1 1 1 1 11/ 1 / 1 /A R i C i R C R i R         so that  1 1 1/ 1Z R i  . 1286 

(ii) Impedance of   1 1 sR C C  arm = 
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(iii) Admittance 1 2sA  of complete circuit: 1289 
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(iv) For 2 1C C  appropriate for water droplets in heptane the admittance simplifies to 1292 
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Thus 1294 
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.    (2.174) 1295 

The maximum value of C" is  1 / 2sC C  that is determined in part by the surfactant layer and is 1296 

greater than the value C1/2 for no series capacitance. This is consistent with the observed 1297 

maxima in "  [37] being about 100 times greater than that calculated from the Maxwell-Wagner 1298 

expression. The maximum in C" also occurs at  max 11/ sR C   that is determined in part by the 1299 

surfactant layer. The dependency of the relaxation time on Cs can account for the (unreported) 1300 

fact that changing the suspending medium changed max  [37] since the suspending medium 1301 

would be expected to affect the surfactant layer and Cs. 1302 

 The imaginary component of the electric modulus for 2 1C C  is 1303 

   
1 1 1

2 2 2 2 2 2
11 1 1 1

1
"

1 1

i R i R C
M

Ci R C i R C

 

 

 
   

  
,       (2.175) 1304 

the maximum value of which is  11/ 2C  and therefore contains the desired information about C1 1305 

that is independent of Cs. The frequency of maximum M" is  max 1 11/ R C   and is also 1306 

independent of Cs. Observe that these simplifications arise solely from making C2 much smaller 1307 

than C1 and do not depend on Cs being much larger than C1 as stated earlier [1]. 1308 

 Matlab® and GNUOctave calculations of the relaxation functions for the circuit enable 1309 

values of the circuit elements to be quickly estimated that produce trends that are generally 1310 

consistent with the experimental data, with the notable exception of the maximum values of "  1311 

(discussed briefly below). For example good agreement with the experimental trends is attained 1312 

with 3

1 10 ;R   3

1 10 ;C   5

2 10 ;C   45 10sC   . The value of 100 for the ratio C1/C2 was 1313 

chosen to approximate the ratio of permittivities of water and hexane and to accommodate an 1314 

unknown geometric factor for the suspending medium relative to the droplet, and the value of sC  1315 

was found from the experimental ratio of 0.5 for the frequencies of maximum "  and M" (the 1316 

latter being higher). The geometric factor is probably the largest source of uncertainty in the 1317 

values of the circuit parameters. 1318 

 Equation (2.174) indicates that the maximum value of "  should be increased by a factor 1319 

of  1 1/ 100sC C C   over that for no surfactant, consistent with experiment [37]. 1320 

 The Maxwell-Wagner equivalent circuit discussed here is obviously crude but serves to 1321 

rationalize the remarkable success of the electric modulus in analyzing the Maxwell-Wagner 1322 

effect for water droplets in a dielectric medium of low permittivity. 1323 

 1324 
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2.3.7.3 Hydration Water 1325 

 Water of ionic hydration is readily probed by dielectric relaxation, if the ionic 1326 

conductivity contribution to "  and tan  is sufficiently small. Data for glasses of  3 2
Ca NO  1327 

hydrates [39] provide a convenient illustration of how water in different environments can be 1328 

distinguished dielectrically. Spectra of dielectric tan  vs. 1/T at 1 Hz were shown for eight 1329 

glasses of composition  3 22
Ca NO . H OR   3 22

Ca NO . H OR  (R = 3, 4, 5, 6, 8, 10, 12, 14). 1330 

Glasses with lower R values required the addition of 3KNO  to ensure glass formation but this 1331 

was expected to have only a minor effect on water dynamics because of the larger ionic 1332 

charge/radius of K  compared with 2Ca  . Four relaxations were observed: 1333 

   A conductivity relaxation at low 1/ T  corresponding to the glass transition manifested as 1334 

the steep increase in tan . The relaxation temperature corresponds to tan 1   (vide infra) and 1335 

will be referred to as the "conductivity wing". It is essential that this relaxation occur at 1336 

sufficiently high T in order that the other relaxations occur in the poorly conducting glassy state 1337 

and not be hidden beneath the conductivity contribution to tan . 1338 

   A dielectric relaxation lying close to the conductivity wing whose shift in position with R 1339 

paralleled that of the conductivity relaxation. It was observable only as a shoulder for 1 6R    1340 

and (probably) R = 10 but is seen as a clear peak for R   trace. 1341 

   A weak low temperature dielectric relaxation  3 2

maxtan 10 10     in the 1342 

 3 22
Ca NO . H OR  system occurred as a broad maximum for R = 4, 5, 6 and as a shoulder for 1343 

8.R   1344 

   A dielectric relaxation whose intensity increased rapidly with R. It is probably a part of 1345 

the broad maximum near 310 / 7.5T   for R = 8 but appeared as a clear maximum for 10R  . 1346 

 The   relaxation was assigned to cation bound water that presumably coordinates Ca+ 1347 

rather than K+ because of the larger ionic charge/radius ratio of the former. The rapid shift in 1348 

relaxation temperature with R > 1 was interpreted as a change in water dynamics as H2O replaces 1349 

3NO  in the first coordination shell of Ca+. The R - invariance for R = trace and R = 1 was 1350 

attributed to a single water molecule lying in the first coordination shell. This assignment of the 1351 

  relaxation to 2Ca   bound water implied a dielectric activity that merits discussion. The most 1352 

plausible geometry for H2O coordinated to Ca+ is when the H2O dipole points away from the 1353 

Ca+ ion. However if this held in the complex ionic environment of the glass there would be no 1354 

dielectric activity because the rotational axis would bisect the H-O-H  angle and coincide with 1355 

the dipole vector. Two alternatives suggest themselves: 1356 

(1) Exchange of water and nitrate in the coordination shell. This implies an associated 1357 

volume fluctuation and ultrasonic activity. Such activity has been observed [40,41] in 1358 

3 2 2Ca(NO ) RH O  solutions at about 20 MHz at room temperature. This relaxation moved to 1359 

higher frequencies with increasing R and the edge of a second relaxation at higher frequencies 1360 

was noted, both being consistent with the glassy state dielectric behavior. Such an exchange 1361 

would also be expected to contribute to the translational ionic migration that produces 1362 

conductivity, consistent with the essentially R – invariant difference between the   and   1363 
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relaxation temperatures. The possibility that this relaxation is part of a conductivity relaxation 1364 

with a distribution of relaxation times is discussed in §2.5.  1365 

(2) A different +

2Ca -OH  geometry is favored in which the dipole vector and rotation axis do 1366 

not coincide. Neutron diffraction data indicate this occurs in 2CaCl  and 2NiCl  solutions [42], in 1367 

which an angle of ca. 40o was observed between the dipole and coordination axes at R = 12.6 1368 

 2NiCl  and 12.3  2CaCl , and about 0o in dilute solutions  450R  . It was not possible to 1369 

find the dielectric activity per water molecule of the   relaxation in the 3 2 2Ca(NO ) RH O  1370 

glasses because of overlap with the conductivity wing and the   relaxation, but for the mixed 1371 

nitrate glasses the well-defined conductivity wing for the anhydrous mixture could be shifted and 1372 

subtracted to yield plausibly shaped peaks of tan  vs. 1/ T . The peak heights and widths in the 1373 

R = 1 and R = 3 glasses were about the same so that barring an unlikely ratio of activation 1374 

energies in excess of 3 it appears that the dielectric activity per water molecule does indeed 1375 

decrease with increasing R. A crude calculation indicated that the observed values of maxtan  1376 

yielded sensible values of  . The dipole being relaxed was assumed to be the component of 1377 

the water dipole  W  orthogonal to the rotation axis, magnitude  sinW  , and maxtan  was 1378 

assumed to be proportional to  0   that is in turn proportional to  
2

sinWR     . Equating 1379 

maxtan  for the 1R and 3R glasses then yielded 1380 

   2 2

3 1

3 1

3 1
sin sinR R

R RT T
    ,        (2.176) 1381 

so that  1382 

   2 2

3 1sin 0.286sinR R    .        (2.177) 1383 

Examples of  1 3,R R    pairs were  0 060 ,28  and  0 030 ,15 , both of which were sensible 1384 

values and roughly comparable with the neutron diffraction values. 1385 

 For large values of R the   relaxation was expected to resemble pure water so that an 1386 

extrapolation to infinite dilution should yield the temperature at which the relaxation frequency 1387 

of water is 1 Hz. The retardation temperatures at 1 Hz for the   relaxation in four aqueous 1388 

glasses (solutions of Ca(NO3)2, CaZnCl4, Li2ZnCl4 and ZnCl2) all extrapolated to about 162 5  1389 

K at infinite dilution, strongly suggesting that the relaxation temperature for pure water would be 1390 

162 5  K at 1Hz. The temperature dependence of the relaxation time for water between -20oC to 1391 

+30oC [43] was found to follow the Fulcher equation 1392 

  0

0

exp
B

T
T T

 
 

  
 

          (2.178) 1393 

with 
131.25 10A    s, 669B   K, 0 138T   K. The extrapolated {1 Hz, 162 5  K} datum 1394 

agreed with the Fulcher value {1 Hz, 162 K} (uncertainties not stated). Given the large 1395 

extrapolation over about 11 orders of magnitude this agreement constitutes strong evidence that 1396 

dielectric relaxation of water outside the first coordination shell of the Ca2+ and Li+ cations is the 1397 

same as pure water. A similar extrapolation of LiCl in glycerol data yields a relaxation 1398 

temperature equal to the directly observable value for pure glycerol at 1 Hz. 1399 
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 1400 

2.4 Conductivity Relaxation 1401 

2.4.1 General Aspects 1402 

 As noted earlier relaxation of polarization can occur either by translation of electric 1403 

charge (electric current) or by dipole rotation (displacement current). Thus polarization induced 1404 

by an electric field can occur by conductivity relaxation [44] arising from long range 1405 

translational migration of point charges as well as by the dielectric relaxation considered so far 1406 

(dipole rotation or localized hopping of ions between sites). The time scale associated with a 1407 

frequency invariant conductivity 0  defined by  1408 

0 0/ eD             (2.179) 1409 

(see eq. 1.42 Chapter One), but this time scale is not evident in '  vs ln  plots nor is it for the 1410 

monotonic function 0 0* ' / ei     . However "  and M" clearly indicate the time scale 1411 

because they exhibit maxima in the frequency domain at 1/ D  . The time constant D  in 1412 

eq. (2.179) differs from the characteristic time e  in the Fermi gas expression for electronic 1413 

conductivity in metals, which is directly proportional to 0  [45]: 1414 

02e

m

ne
  ,           (2.180) 1415 

where n is the number density of charge carriers of effective mass m and charge e. The reason for 1416 

the difference is that e  is the average time of travel between scattering events (collisions with 1417 

ions, electrons or phonons or by umklapp), whereas D  is the residence time between 1418 

(effectively instantaneous) jumps between adjacent sites. Nor is D  equal to E  for dielectric 1419 

relaxation, although they are related by an expression to be derived later. As noted already the 1420 

relaxation time D  is a measure of the rate of decay of the polarization at constant displacement, 1421 

i.e. the decay of the electric field E at constant D [44], whereas the dielectric retardation time is a 1422 

measure of the decay rate of the polarization at constant E, i.e. of D at constant E. 1423 

Equation (2.179) implies that ionic conductivity cannot exceed ca. 3 -110  Sm , since D  1424 

cannot reasonably be less than a vibrational lifetime and   is rarely greater than about 10. The 1425 

vibrational v  lifetime is conveniently defined by the condition for critical damping (§1.11), 1426 

0 1v   , so that for a typical vibrational frequency of about 
12 1210 Hz 6 10 rad/sf      the 1427 

value of v  is about 
132 10 s  and  1428 

  12

0
0,max 13

8.854 10  F/m 10
400 S/m

2 10  sV

e 











  


       (2.181) 1429 

that is comparable with the highest conductivity observed for ionic conductors. 1430 

 The properties of the four basic functions for conductivity relaxation are conveniently 1431 

illustrated using a circuit comprising three elements in series: (i) a capacitance 610 F 1 FsC  1432 

; (ii) a parallel combination of a resistance 8

1 10R    and a capacitance 12

1 10 F(1pF)C   (iii) 1433 

another parallel combination of a resistance 6

2 10R    and a capacitance 12

1 10 F(1pF)C  . 1434 
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The two parallel Rp - Cp elements could for example simulate crystal and inter-crystal 1435 

impedances in a polycrystalline samples and the series capacitance Cs could simulate electrode 1436 

polarization. As discussed below this circuit has been used by several groups and will be referred 1437 

to as the "ideal conductivity" circuit. A Matlab®/GNU Octave code for generating the 1438 

corresponding spectra for the real and imaginary components of the four basic complex 1439 

relaxation functions (§2.1.9), and the corresponding complex plane plots of the imaginary 1440 

component vs. the real component, is given in Appendix AA. 1441 

 We discuss next the controversial electric modulus function (a discussion of many of the 1442 

issues surrounding it is given in [1]).  The electric modulus * ' "M M i M   appears to have been 1443 

first defined by McCrum, Read and Williams [32], but its use in analyzing conductivity 1444 

relaxation was first initiated and exploited by Macedo and coworkers [44]. The usefulness of M* 1445 

is illustrated by the simplest case of a constant conductivity 0  and constant relative permittivity 1446 

  (the reason for the subscripts will become clear when distribution functions are considered 1447 

later). For convenience we copy eq. (2.101) here: 1448 

2 2

2 2

'
' (a)

' "

"
" (b).

' "

M

M



 



 







      (2.182) 1449 

Insertion of the relations 0 0" / e    and '   then yields 1450 

2 2
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          (2.183) 1451 

and 1452 

2 2

1
"

1

D

D

D

M


  

 
  

 
 .         1453 

 (2.184) 1454 

Thus M" exhibits the desired (symmetric) peak as a function of  ln  . The components of *  1455 

are related to those of M* by 1456 

0

2 2 2 2

0 0

" 1
'

e e 1 1

D

D

D D

M 


     

   
     

    
       (2.185) 1457 

and 1458 

02 2 2 2

0 0

'
"

e e 1 1

D D D

D

D D

M   
 

     

   
     

    
,      (2.186) 1459 

where 0 0 01/ / e D

D     . Note that M" and "  have identical frequency dependencies but 1460 

are weighted by 1/   and 0  respectively. This difference in weighting factors can be exploited 1461 

to considerable advantage in the analysis of ac conductivity (§2.3.5.6-§2.3.5.8). 1462 

 For dielectric relaxation M* and *  are almost equivalent because a Debye peak in "  1463 

also yields a Debye peak in M" [44] [see eqs. (2.132) and (2.133)]. The derivation for a Debye 1464 

dielectric without any conductivity is given in Appendix 2.1. It might appear that a peak in M" 1465 

could be due to either a conductivity or dielectric process and that M* could not distinguish 1466 
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between them. This is not necessarily so, however, because the average relaxation time D  will 1467 

be calculable from the limiting low frequency conductivity [eq. (2.73)] if the process is a 1468 

conductivity relaxation. If the peak in M" is due to dielectric relaxation the retardation time will 1469 

not correlate with 0 . The archetypal example of dielectric relaxation being correlated with 0  1470 

occurs in the alkali silicate glasses and it was this correlation that originally led to the inference 1471 

that the residual dielectric loss (after subtraction of 0 0/ e  ) is due to the same alkali migration 1472 

process that produces 0  [27-31]. This led Macedo and collaborators [44] to first use M* in the 1473 

analysis of conductivity relaxation.  1474 

 Note also that for dielectric relaxation 1475 

  0
0

lim ' 1/dielectricM


 


          (2.187) 1476 

compared with  
0

lim ' 0conductivityM





  for conductivity relaxation. The low frequency 1477 

conductivity relaxation limit for M ' is revealing conceptually because M ' is a measure of the 1478 

restoring force in response to an electric field perturbation. The low frequency limit of this 1479 

restoring force is finite for dielectric relaxation because the charge storage ability remains 1480 

nonzero:   0lim '


  


 . For conductivity relaxation the dielectric loss becomes infinite as 1481 

0  (dissipation completely overrides any storage capability) and the restoring force is “short 1482 

circuited”. This is precisely analogous to the mechanical modulus going to zero as the viscosity 1483 

of a viscoelastic material dominates at low frequency and the elasticity disappears. The electric 1484 

modulus was first introduced to emphasize this mechanical analogy [32]. 1485 

 An alternative to the electric modulus for analyzing materials in which the dielectric loss 1486 

and conductivity are correlated has been proposed by Johari [46]. This proposal is similar in style 1487 

to a mechanism for ionic conductivity proposed by Hodge and Angell [47] that was based on the 1488 

one-dimensional Glarum diffusion model for dielectric relaxation [§1.12.6, Chapter One]. Recall 1489 

that the Glarum model comprises a relaxing dipole that can relax either independently with 1490 

retardation time 0  or by the arrival of a defect of some kind that relaxes it instantly. Hodge and 1491 

Angell suggested that the dipole is a trapped ion/vacancy pair (that is known to exhibit Debye 1492 

dielectric behavior) and that the defects are itinerant ions that contribute to 0 . The average 1493 

activation energy for oscillation of trapped ions and that for ion migration are presumed to be 1494 

similar (perhaps identical), thus accounting for the nearly temperature invariant distribution of 1495 

conductivity relaxation times. The Glarum function is mathematically similar to the Davidson-1496 

Cole function that has a Debye-like low frequency loss that is rarely observed. This low 1497 

frequency behavior arises from the Glarum assumption that the dipole has just one retardation 1498 

time. However if a distribution of dipole retardation times is assumed, corresponding to a 1499 

distribution of sites in an amorphous material for example, better agreement with experiment is 1500 

obtained without changing the essential physics of the Glarum model. 1501 

 1502 

2.4.2 Distribution of Conductivity Relaxation Times 1503 

 Both M* and *  can be described in terms of a distribution of conductivity relaxation 1504 

times: 1505 
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      (2.188) 1506 

and similarly for  * i  . A distribution of conductivity relaxation times affects the dispersion 1507 

of the corresponding complex admittance functions  * i   and  * i  : 1508 
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  ,         (2.189) 1509 
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   ,        (2.190) 1510 

and 1511 
2

0 2

DD D D
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   .          (2.191) 1512 

 A distribution of conductivity relaxation times is not easily distinguishable from 1513 

dielectric and conductivity relaxations occurring together in modulus spectroscopy [36,44] 1514 

although the dielectric relaxation will not be observable if E D   because 0  will then exceed 1515 

the limiting high frequency dielectric conductivity given by eq. (2.131): 1516 
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.    (2.192) 1517 

This phenomenon has been directly observed in systems for which the dielectric retardation time 1518 

is essentially constant but whose conductivity is increased by addition of electrolyte [48, 49] (see 1519 

§2.3.6.9 below). This problem is ameliorated if conductivities can be measured with very high 1520 

precision [50]. 1521 

 1522 

2.4.3 Constant Phase Element Analysis 1523 

 It is sometimes useful to have a circuit element for which the phase angle is independent 1524 

of  , 1525 

   * exp
2

i
W i W


 

 
  

 
,        (2.193) 1526 

where  W   is any real function and 0 1   is real; the positive sign in the exponent 1527 

corresponds to an admittance and the negative sign to an impedance. As noted in Chapter One 1528 

and §2.4.3, however, eq. (2.193) can only be valid over a restricted frequency range since 1529 

otherwise the underlying distribution of relaxation/retardation times cannot be normalized. 1530 

Equation (2.193) is a generalization of the Warburg impedance for which 0.5  . 1531 

 Almond and West [51] suggested the addition of such a parallel constant phase element 1532 

admittance W [eq (2.193)] to the ideal parallel RpCp element, in order to better simulate the 1533 

typical admittance of solid electrolytes. The electrical response functions for this circuit are: 1534 

Conductivity 1535 
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   (2.194) 1536 

where k  = geometric cell constant,  '

0 0 cos / 2W kW  ,  "

0 0 sin / 2W kW  . 1537 

 1538 

Relative Permittivity 1539 
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Electric Modulus 1542 
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Equation (2.19) yields the published Almond-West form with the substitutions 1544 

   
1/ 1/2'

0 0 0 0/ ' /x W


          and    
1/

'

0 0 0 0/ /D W e x Qx
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     (2.197) 1546 
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 1550 

2.4.4 Determination of  1551 

 Several methods are available for estimating 0  when electrode polarization and 1552 

intergranular impedances obscure the limiting low frequency conductivity plateau. An accurate 1553 

value for 0  is important because, in addition to the obvious need for reliable data, its 1554 

contribution to "  must be subtracted for permittivity analyses (the attendant difficulties have 1555 

been discussed by Ravaine and Souquet [52, 53]). Accurate values of 0  are also needed in 1556 

order to determine reliable activation energies for conductivity. For example if  log   measured 1557 

at constant measuring frequency meas  is plotted against 1/ T in the usual Arrhenius fashion, 1558 

spurious changes in slope can result from both polarization and bulk relaxation effects. If meas  1559 

lies in a region where polarization is significant then the measured conductivity will be less than 1560 

0  by an amount that increases with increasing temperature, because of the shift to higher 1561 

frequencies of the polarization '  spectrum (which has essentially the same effective activation 1562 

energy as the sample conductivity). A fictitiously low activation energy is then obtained at high 1563 

temperatures as meas  probes deeper into the polarization relaxation. A spuriously low activation 1564 

energy can also occur at low temperatures when meas  lies within the bulk relaxation frequency 1565 

range, where '  is often observed to increase as  1   . In this case the measured 1566 

conductivity will exceed 0  by an amount that decreases with increasing temperature and the 1567 

measured activation energy will be smaller than the true value by the factor ln '/ lnd d   : 1568 

 , , 1a obs a trueE E   .          (2.199) 1569 

In cases where 1  , as occurs in some electronic semiconductors [48], the fixed frequency 1570 

conductivity is therefore almost independent of temperature in the bulk relaxation temperature 1571 

region. 1572 

 1573 

2.4.4.1 Analyses in the Complex Resistivity Plane 1574 

 Ravaine and Souquet [52,53] used the complex resistivity plane for determining 0  of 1575 

alkali silicate glasses in the presence of electrode polarization by low frequency extrapolation to 1576 

the real axis. They fitted the high frequency spectrum (i.e. sample relaxation) to the Cole-Cole 1577 

[54] function (see §1.12.5) and extrapolated the Cole-Cole semicircle to the real axis. For severe 1578 

polarization Armstrong et al. [55-59] used a similar method based on extrapolation of the high 1579 

frequency polarization spike to the real axis. This method is restricted to high conductivities 1580 

whose relaxation frequency lies above the measuring frequency range. As noted earlier the spike 1581 

sometimes occurs at an angle to the real axis rather than the ideal right angle that has been 1582 

attributed to “surface roughness” at the electrode interface [55]. 1583 

 1584 

2.4.4.2 Modulus and Resistivity Spectra 1585 

 In cases where polarization and conductivity relaxations overlap significantly and no 1586 

plateau in '  is observed, 0  can be estimated from eq. (2.179) if D  and   are known. 1587 

These can often be determined with sufficient precision by fitting  "M   to an appropriate 1588 

0
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empirical function: only the bulk relaxation is included in the fitted function because of the 1589 

insensitivity of M" to high capacitance effects such as polarization and intergranular impedances. 1590 

For this application the fit to M" should be weighted by the lower frequency data because these 1591 

reflect the longer relaxation time components of the distribution that contribute more 1592 

significantly to D . The maximum in "  , 
"

max , can also be used to estimate 0 : if the full 1593 

width at half height of the peak in "  is   decades, then 0  can be estimated to within about 1594 

±10 % from the empirical relation 1595 

0 "

max

1

1.75






.          (2.200) 1596 

If only the maximum in "  at max  is observable 0  can still be estimated from the value of '  1597 

at max  by assuming  " ln   to be symmetric: 1598 

 
0

max

1

2 '


 
 .          (2.201) 1599 

 1600 

2.4.4.3 Complex Admittance Plane 1601 

One of the first applications of complex plane plots was to polycrystalline yttria-zirconia 1602 

electrolytes by Bauerle [60]. Bauerle gave an excellent discussion of equivalent circuits and their 1603 

corresponding complex admittance plane plots, but the only circuit used in their data analysis 1604 

was a series combination of two parallel RpCp elements and a series resistance Rs. One of the 1605 

parallel RpCp elements in this circuit represents the electrode interface: the capacitance of a 1606 

double layer (electrode polarization) in parallel with the resistance of an oxygen gas-oxide ion 1607 

charge transfer process. The second RpCp element represents an intergranular boundary 1608 

(“constriction”) impedance, and the pure resistance simulates the bulk crystal. The 1609 

experimentally observed complex admittance plane plots were in excellent agreement with the 1610 

equivalent circuit  behavior. The zero frequency conductivity predicted from the complex plane 1611 

plot was also in excellent agreement with four terminal data, and the expected dependence of the 1612 

electrode impedance on oxygen partial pressure was observed. Despite these successes, some 1613 

disadvantages of the method should be pointed out. First, in assuming that the bulk crystal acts as 1614 

a pure resistance the analysis implicitly assumes that the measuring frequencies are well below 1615 

the conductivity relaxation frequency, that can only be confirmed retrospectively. Second, 1616 

although there are three relaxing elements (since the sample resistance must realistically have a 1617 

capacitance in parallel with it), the complex admittance plane exhibits only two arcs that reflect 1618 

the differences between the relaxing elements. If the observed relaxations overlap significantly, 1619 

an assumption must be made about the shapes of the two relaxations before extrapolations are 1620 

made, i.e. a functional form for the extrapolating function must be chosen. Bauerle’s data were 1621 

well described by the Cole-Cole function but this would not be expected to occur in general. 1622 

 1623 

2.4.5 Combined Conductivity and Dielectric Relaxation 1624 

 These two relaxation phenomena can occur together provided the conductivity relaxation 1625 

occurs at lower frequencies than any dielectric relaxation, otherwise the increase in "  as f 1626 

decreases will dominate any dielectric loss. 1627 

 1628 
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2.4.6 Examples 1629 

2.4.6.1 Electrode Polarization and Bulk Relaxation in the Frequency Domain 1630 

 Consider an idealized equivalent circuit similar to that used by Bauerle in which the 1631 

series resistance is replaced by a series capacitance. Specific values of the parallel RpCp elements 1632 

are 8 11 -3

1 1 1 1 110 , 10 F = =10 sR C R C      , 6 11 -5

2 2 2 2 210 , 10 F = =10 sR C R C       and 1633 

610 FsC     so that the distribution of conductivity relaxation times comprises two delta 1634 

functions at 3

1 10  s and 5

2 10  s. The shorter relaxation time element simulates the crystal 1635 

impedance in a polycrystalline preparation, the longer relaxation time element simulates an 1636 

intergranular impedance, and the series capacitance simulates electrode polarization. This circuit 1637 

has been found to be qualitatively useful in describing the electric response of a variety of 1638 

conductors, including a superionic conductor [61], an electronic semiconductor [62], and a 1639 

normal ionic conductor [9]. The relaxation time averages are 1640 
2 2

2 91 2 5.0005 10 s
2

D

 
 

           (2.202) 1641 

51 2 5.05 10 s
2

D

 
 

            (2.203) 1642 

1 1
1 51 2 5.05 10 s

2
D

 


 
 

           (2.204) 1643 

The high frequency relative permittivity is (assuming k = 1 for convenience so that 0 0eC   1644 

numerically) 1645 

 
1 2

0 1 2

5.647
C C

e C C
  


          (2.205) 1646 

and the low frequency relative permittivity is 1647 
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.      (2.206) 1648 

The limiting low and high frequency conductivities are 1649 
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     (2.207) 1650 

   12 5 5 1

0 1/ 8.854 10 5.647 5.05 10 2.53 10 SmDє      

       .   (2.208) 1651 

 1652 

(1)  There are two peaks each in "  and M" spectra that reflect the different weighting of the 1653 

two functions – eqs. (2.184) and (2.186). The two "  peak heights differ by the ratio of the 1654 

resistances 8 6 210 /10 10 , whereas the M" peaks are equal in height because the two 1655 

capacitances are equal. If the capacitances were different and the resistances the same then the 1656 

peaks in "  would have the same height and those in M" would differ. Also "  increases 1657 

indefinitely at low frequencies due to Cs whereas M" is unaffected. 1658 

(2) After subtraction of the contribution of 0  to " , and of the limiting high frequency 1659 
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contribution of   to " , both "  and "  exhibit a single peak at a frequency between the two 1660 

maxima exhibited in the M" and "  spectra. These single peaks in the admittance functions 1661 

occur because at intermediate frequencies the high frequency RC  element behaves as a 1662 

resistance and the low frequency RC element behaves as a capacitance. As noted in §2.2.4 the 1663 

effectively series RC circuit will produce a single loss peak in the admittance, and this is a 1664 

disadvantage of admittance functions in analyzing series processes. For the electrode polarization 1665 

relaxation caused by Cs in series with the sample resistance  1 2R R  peaks in 0" e    and 1666 

0 0" / e    are observed at lower frequencies. 1667 

(3) A low frequency decrease in '  and increases in '  and "  are found that due to the 1668 

electrode polarization simulated by Cs. For expositional clarity the value of Cs was chosen to 1669 

ensure a clean separation between the simulated polarization and bulk relaxations but this does 1670 

not occur in typical experimental data. 1671 

(4) The complex plane plots have both advantages and disadvantages compared with the 1672 

spectra. Two disadvantages are the inconvenience of locating the frequencies of maximum loss, 1673 

and of comparing these frequencies in M* and *  plots because of the opposite directions of 1674 

increasing frequency. On the other hand, complex plane plots are useful for extrapolations. For 1675 

example in highly conducting materials whose conductivity relaxation frequency 1/ D  lies 1676 

above the measuring frequency, and for which electrode polarization is significant or even 1677 

severe, the polarization spike in the *  plane can be extrapolated to the real axis to give an 1678 

estimate of 0 01/  . At frequencies above the conductivity relaxation frequency, 0  is 1679 

manifested as a spike in the *  plane, corresponding to the limiting values of 1680 

0 0
0 0

lim " lim / є
 

  
 

   and 
0

0
lim '


 


 . 1681 

******** 1682 

 1683 

2.4.6.2 Conductivity Relaxation in Sodium  Alumina 1684 

The following permittivity, modulus and resistivity spectra of single crystal sodium 1685 

-alumina at 113 K have been reported by Grant and Ingram [64,65]: (i) the "  spectrum 1686 

perpendicular to the conduction planes; (ii) the M" spectra in orientations perpendicular and 1687 

parallel to the conducting planes; (iii) the Z" spectrum in the parallel orientation. The frequency 1688 

of maximum Z" in the parallel orientation was close to the frequency of maxima in M" and "  1689 

measured in the perpendicular orientation, and the activation energy for the parallel resistivity 1690 

spectrum was close to that for the perpendicular dielectric loss spectrum. The data for the 1691 

perpendicular orientation were interpreted in terms of a Maxwell layered dielectric [65], with 1692 

each insulating spinel block being a capacitance and each conduction plane a resistance. The 1693 

activation energy for the dielectric loss was thus determined by that of the conductivity of the 1694 

conducting layers, that the data suggest is similar in directions parallel and perpendicular to the 1695 

conduction planes. The extraordinarily large width of the M" spectrum for single crystal Na  1696 

alumina in the parallel orientation [66,67] indicates a very broad distribution of conductivity 1697 

relaxation times, and the resistivity and modulus spectra taken together suggested that the 1698 

distribution is bimodal. Grant and Ingram proposed that at 113 K the low frequency conductivity 1699 

is determined by an activated localized ion motion that is the same in both orientations. The 1700 
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higher frequency conductivity, which contributes to M" but not to " , results from a relatively 1701 

free motion of ions crossing low energy barriers. These mechanisms are consistent with low 1702 

temperature localization of sodium ions deduced from NMR data [68]. Localized activation is 1703 

not the rate determining step at high temperatures and the well-established low activation energy 1704 

for conductivity in sodium  -alumina was observed. The spectra of M" and Z" for a 1705 

representative polycrystalline specimen at 113 K were also shown. The Z" spectrum is 1706 

uninformative at this temperature, increasing steadily at low frequencies due to electrode 1707 

polarization. The M" spectrum exhibited a maximum at about the same frequency as the single 1708 

crystal M" spectrum observed perpendicular to the conduction planes, and a reproducible 1709 

shoulder was observed at about the same frequency as M" observed parallel to the conduction 1710 

planes in single crystals.  1711 

This work demonstrates that comparison of the functions M", "  and "  can uncover 1712 

details of the conductivity behavior of sodium   alumina that could not even be discussed if 1713 

only *  and *  data were used. 1714 

 1715 

2.4.6.3 Complex Impedance Plane Analysis of Electrode Polarization in Sintered  1716 

Alumina. 1717 

 The use of the complex impedance plane for extrapolating polarization phenomena to 1718 

obtain data on the bulk material was used extensively by Armstrong and coworkers in their 1719 

studies of superionic conductors such as Na  -alumina [55] and Ag-Rb iodide [54-58]. A spike 1720 

in the complex impedance plane corresponds to the low frequency increase in Z" due to the 1721 

series electrode capacitance and extrapolation of this spike to the real axis yielded the limiting 1722 

low frequency value of 'Z  and therefore of 0 . Different surface preparations were observed to 1723 

affect the overall impedance but all of the extrapolations gave the same values for 0 . This 1724 

method is clearly most appropriate for very highly conducting materials whose conductivity 1725 

relaxation lies at frequencies well above those that are experimentally convenient. 1726 

 1727 

2.4.6.4 Complex Impedance Plane Analysis of Atmosphere Dependent Electrode Effects in 1728 

KHF2 1729 

 Complex impedance plane analysis was also used by Bruinink and Broers [69] for the   1730 

and   phases of KHF2. In an atmosphere of hydrogen with platinum paint electrodes, the 1731 

complex impedance plane plot of data for  -KHF2 was consistent with a Warburg impedance in 1732 

parallel with the bulk resistance and capacitance [69], and extrapolation to the real axis gave a 1733 

value of 0  in agreement with the separately determined four terminal dc value. This plot gave 1734 

no indication of interfacial polarization, consistent with  -KHF2 being a proton conductor and 1735 

the platinum paint electrodes behaving as reversible hydrogen electrodes. This contrasted sharply 1736 

with the low frequency behavior of  -KHF2 in a vacuum, where a double layer capacitance of 1737 

about 440 mF m-2 per electrode in parallel with a Faradaic resistance of about 
42 10 m   per 1738 

electrode produced an additional semicircle in the complex plane. For the polycrystalline 1739 

-phase the complex plane plot was essentially unchanged for data taken in both a hydrogen 1740 

atmosphere and a vacuum [69] and is consistent with a Warburg impedance in series with a 1741 

parallel RC element, corresponding to electrode polarization due to blocking of +K  and/or F  1742 
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charge carriers. An RC  transmission line was used to rationalize the Warburg impedance in 1743 

terms of bulk electrical relaxation. 1744 

 1745 

2.4.6.5 Intergranular Effects in Polycrystalline Electrolytes 1746 

 The effects of intergranular material on the overall electrical response of polycrystalline 1747 

electrolytes have been extensively documented. Only one example is discussed here [9,66]. The 1748 

simplest equivalent circuit representation of such materials comprises two parallel RC  elements 1749 

in series, where one element is associated with a crystallite and the other with intergranular 1750 

material. Armstrong et al. [70] have shown that such a series circuit can represent the principle 1751 

features of polycrystalline electrolytes. Since the interface is thin and the permittivities of ionic 1752 

solids typically vary by a factor of less than 10, the capacitance Ci associated with the interface is 1753 

much higher than that of the grain Cp: 1754 

0
0

'
'i

i p

i

є
є

A
C k C

d


            (2.209) 1755 

where Ai is the average cross section area, di is the average thickness of the intergranular 1756 

material, and 0 0e /k C  is the cell constant. 1757 

 1758 

2.4.6.6 Intergranular Cracking 1759 

 Experimental M" and "  spectra for a polycrystalline material known to have 1760 

intergranular cracking were shown in reference [9]. The spectra were similar to those for two 1761 

parallel RpCp elements in series although the experimental peaks were broader - they could be 1762 

approximated as the sum of two Debye peaks of equal heights separated by about a decade in 1763 

frequency, so that the maxima in "Z  and "M  could be approximated as / 4pR  and C0/4Cp, 1764 

respectively. Computed values of R and C for the intergranular and granular material in the 1765 

cracked sample, using these approximations and assuming a resolution into symmetric "  1766 

peaks, are: 1767 

Lower Frequency (Intergranular) Relaxation in Cracked Sample 1768 

6

max( ")

1
6.4 10  si

Z




   ,         (2.210) 1769 

" 6

max4 6.4 10iR Z    ,          (2.211) 1770 
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  .           (2.212) 1771 

Higher frequency (Intragranular) Relaxation in Cracked Sample 1772 

7
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1
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   ,          (2.213) 1773 

" 6

max4 2.6 10cR Z    ,          (2.214) 1774 

0.06pFc
c

c

C
R


             (2.215) 1775 

 The impedance spectrum was drastically altered after annealing out of the intergranular 1776 
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cracking [9] (Figure 2.14(C)). The remaining single peak in Z" was essentially indistinguishable 1777 

from the high frequency peak in the cracked material, strongly suggesting that it was due to 1778 

intra-crystal relaxation and that the additional low frequency peak for the unannealed sample is 1779 

due to cracking and the consequent air gaps. Consistent with this, the modulus spectrum was 1780 

essentially unchanged by annealing since it is unaffected by the high capacitance cracks. These 1781 

estimates of the intragranular and intergranular resistances were confirmed by the 0  data: the 1782 

observed conductivity of the cracked sample was largely determined by the intergranular 1783 

resistance, and the ratio of the conductivities of the sample before and after annealing should 1784 

have been 1785 
6

max max

6

max

" " 2.25 10
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" 0.65 10

low high
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Z Z

Z

 



 
 


,        (2.216) 1786 

in fair agreement with 1787 

3.1annealed

cracked




 .           (2.217) 1788 

The combination of modulus and impedance spectroscopies once again revealed details that 1789 

could not be obtained from the original '  and '  data. 1790 

 1791 

2.4.6.7 Intergranular Gas Adsorption 1792 

The effects of oxygen and alkali doping on the electrical response of polycrystalline zinc 1793 

oxide were studied by Seitz and Sokoly [71]. Only the effects of oxygen pressure are discussed 1794 

here. An increase in conductivity was observed with decreasing oxygen pressure and the absence 1795 

of changes due to different electrode materials implied that adsorbed oxygen at grain surfaces 1796 

was responsible for the observed polarization of the sample. The conductivity and permittivity 1797 

were plotted explicitly as a function of frequency in this report and these data allowed M" and 1798 

"  spectra to be calculated without difficulty. The calculated M" and "  spectra exhibited two 1799 

partially resolved peaks whose estimated magnitudes are consistent with a thin (high 1800 

capacitance) high resistance layer determining the low frequency response. Both peaks in the M" 1801 

spectrum have comparable half widths (ca. 1.5 decades) and their relative maximum values 1802 

 48 10  and  21.1 10  are a good (inverse) measure of the relative capacitance of each 1803 

relaxation: / 13hC C  . The resistance ratio / hR R  of the low frequency high frequency 1804 

relaxation can then be estimated from the two values of maxf  (ca. 25 10  and 
53 10 Hz ) to be 1805 

about 45: 1806 

13
600 45

h h h h

R C R R

R C R R
    .         (2.218) 1807 

The conductivity estimated from the height of the lower frequency resistivity peak is 71.1 10  1808 

S/m, in reasonable agreement with the low frequency plateau value of 71.3 10  S/m. From the 1809 

relative frequencies of the M" maxima and the relative heights of the (partly resolved) "  1810 

maxima, the conductivity of the high frequency relaxation is estimated to be about 
6 110 

. 1811 

Because of its higher associated capacitance the lower frequency relaxation almost certainly 1812 

corresponds to an intergranular impedance, and its removal by a reduction in oxygen pressure 1813 

should therefore increase the sample conductivity by about 45 but have a small effect on the 1814 
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measured permittivity (since removal of a high series capacitance has little effect). This predicted 1815 

change in resistivity agrees with the qualitative statement that conductivity increased with 1816 

decreasing oxygen pressure [71]. 1817 

  1818 
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Appendices 1819 

     1820 

Appendix 2.1 – Derivation of M* for a Debye Relaxation with No Additional Separate 1821 

Conductivity 1822 

These derivations are shown for pedagogical clarity rather than mathematical elegance. 1823 
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 1831 

A Matlab®/Octave program for computing the components of M* with added conductivity is 1832 

given below in Appendix 2.2. 1833 

  1834 
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Appendix 2.2 Matlab®/GNU Octave Codes 1835 

Computation Code for a Debye Relaxation with Additional Separate Conductivity 0 . 1836 

The algebraic derivation is excessively tedious and is replaced here by a 1837 

Matlab®/GNUOctave code that plots both components of the *  and M* functions. The values 1838 

of the input parameters are entered by editing the m-file. 1839 

 1840 

% FUNCTION DebyeCondM Computes and Plots M* for Debye E* plus constant conductivity  1841 

function HD = DebyeCondM 1842 

w = logspace(-6,+6,1200); 1843 

Logw = log10(w); 1844 

E00    = 8.854E-12;  % Vacuum permittivity in F/m  1845 

E0D    = 20;   % Low f dielectric relative permittivity 1846 

EinfD  = 10;    % High f dielectric relative permittivity 1847 

DelE   = E0D - EinfD; % Dielectric dispersion range 1848 

EinfE  = 3;   % High f conductivity relative permittivity 1849 

TauD   = 10^-4   % Dielectric relaxation time 1850 

Sigma0 = 10^-15;  % Conductivity in S/m 1851 

Tausig = E00*EinfE/Sigma0 % Conductivity relaxation time 1852 

E2sig  = Sigma0./(E00*w); % Conductivity contribution to E2 1853 

% CALCULATE E1 and E2 1854 

wTauD = w*TauD; 1855 

Num = 1./(1 + wTauD.^2); 1856 

E1 = EinfD + DelE*Num; %Debye E1 1857 

E2 = DelE*wTauD.*Num + E2sig; % Debye E2 + Conductivity E2 1858 

Denom = E1.^2 + E2.^2; 1859 

M1 = E1./Denom; 1860 

M2 = E2./Denom; 1861 

subplot (2,2,1); 1862 

plot (Logw, E1); 1863 

ylabel("E1"); 1864 

subplot (2,2,2); 1865 

plot (Logw, E2); 1866 

ylabel("E2"); 1867 

subplot (2,2,3); 1868 

plot (Logw, M1); 1869 

ylabel("M1"); 1870 

subplot (2,2,4); 1871 

plot (Logw, M2); 1872 

ylabel("M2"); 1873 

 1874 

return 1875 

  1876 
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Appendix 2.3 Derivation of Debye Dielectric Expression from Equivalent Circuit 1877 

Impedance of s sR C  is  1878 

   1/ 1 / 1 /s s s s s s s sZ R i C i R C i C i i C               (C1) 1879 

and its admittance is 1880 

 1/ / 1s s s sA Z i C i              (C2) 1881 

where s s sR C  . The total admittance is 1882 

   * / 1 1/s s p pA i C i G i C              (C3) 1883 

and the complex capacitance is  1884 
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from which eqs. (2.153) and (2.154) obtain. 1886 

  1887 
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